Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change a threat to Indonesian agriculture, study says

03.05.2007
Rice farming in Indonesia is greatly affected by short-term climate variability and could be harmed significantly by long-term climate change, according to a new study by researchers at Stanford University, the University of Washington and the University of Wisconsin. The results are scheduled for publication the week of April 30 in the online edition of the journal Proceedings of the National Academy of Sciences (PNAS).

"Agriculture is central to human survival and is probably the human enterprise most vulnerable to changes in climate," said lead author Rosamond Naylor, director of the Program on Food Security and the Environment at Stanford. "This is particularly true in countries such as Indonesia, with large populations of rural poor. Understanding the current and future effects of changes in climate on Indonesian rice agriculture will be crucial for improving the welfare of the country's poor."

Indonesia-the fourth most populous country in the world and one of the biggest producers and consumers of rice-is characterized by a population of rural poor who depend on rice agriculture for their livelihood, she added.

Hungry season

In the study, the researchers looked at the impact of climate on Indonesian rice farming since 1983. Indonesia has two rice harvests-the main harvest in December and January and a smaller one in late spring. Because summers are dry, rice stocks often diminish and prices rise in the autumn, which Indonesians call the "hungry season." Planting for the main harvest usually begins in October with the coming of the monsoon rains.

The researchers found that rice production since 1983 has been greatly affected by year-to-year climate variability-especially El Niño/Southern Oscillation events, which occur in the Pacific Ocean every two to seven years. During a warm El Niño, the arrival of the monsoon rains is delayed, prolonging the hungry season and disrupting the planting of the main December-January crop.

"During a bad El Niño event, farmers literally wait months before they can plant their crop, resulting in a harvest that is months late and often much smaller in size," Naylor said.

Climate change

After analyzing the recent record, the researchers focused on how climate change could affect rainfall and agriculture in Indonesia in the next 50 years. Using output from 20 global climate models tailored to the complex local topography of the Indonesian archipelago, the authors found that the probability of experiencing a harmful delay in monsoon rains could more than double in some of the country's most important rice-growing regions.

"Most models predict that the rains will come later in Indonesia, that it will rain a little harder once the monsoon begins and then it will really dry up during the summer months," said study co-author David Battisti, an atmospheric scientist at the University of Washington. "So Indonesia could be looking at a much shorter rainy season, with an almost rainless dry season in some areas, squeezing rice farmers on both ends."

While the study did not address how climate change could affect the frequency or intensity of El Niño events in the future, the authors concluded that even if there were no changes in the current El Niño pattern, Indonesian rice growers will face a significantly shortened rainy season. In the absence of adaptive measures, rice growers could suffer greatly, they said.

Adapting for change

What adaptive measures could be taken in the face of harmful short-term variability and long-term change in climate?

"In the short run, the science of El Niño prediction has advanced to the point that reasonably high-confidence forecasts are available at least two seasons in advance," said study co-author Marshall Burke, manager of the Program on Food Security and the Environment. "We have developed a forecasting model that's now being used by the Indonesian Agricultural Ministry to anticipate and plan for El Niño events and their effects on agriculture."

The authors also are working with Indonesian officials to develop longer-run strategies that address the anticipated effects of climate change on agriculture in the country. "Such strategies could include investments in water storage, development of drought-tolerant crops and crop diversification for those farmers at greatest risk," Burke added.

"To our knowledge, our study is the first climate-agriculture study that uses projections from all available global climate models to look at climate effects in a specific region," Battisti said. "Thus, more than past efforts, our study captures the range of uncertainty across different projections of future climate, knowledge which will be crucial for long-run thinking about how to respond."

Added Naylor: "From a scientific perspective, it's imperative that we now replicate this kind of study elsewhere in order to start building a more complete picture of the effects of climate change on agriculture." The researchers are conducting a similar study in China, she added.

Mark Shwartz | EurekAlert!
Further information:
http://fse.stanford.edu/
http://www.atmos.washington.edu/
http://www.stanford.edu/news/

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>