Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Climate change a threat to Indonesian agriculture, study says

Rice farming in Indonesia is greatly affected by short-term climate variability and could be harmed significantly by long-term climate change, according to a new study by researchers at Stanford University, the University of Washington and the University of Wisconsin. The results are scheduled for publication the week of April 30 in the online edition of the journal Proceedings of the National Academy of Sciences (PNAS).

"Agriculture is central to human survival and is probably the human enterprise most vulnerable to changes in climate," said lead author Rosamond Naylor, director of the Program on Food Security and the Environment at Stanford. "This is particularly true in countries such as Indonesia, with large populations of rural poor. Understanding the current and future effects of changes in climate on Indonesian rice agriculture will be crucial for improving the welfare of the country's poor."

Indonesia-the fourth most populous country in the world and one of the biggest producers and consumers of rice-is characterized by a population of rural poor who depend on rice agriculture for their livelihood, she added.

Hungry season

In the study, the researchers looked at the impact of climate on Indonesian rice farming since 1983. Indonesia has two rice harvests-the main harvest in December and January and a smaller one in late spring. Because summers are dry, rice stocks often diminish and prices rise in the autumn, which Indonesians call the "hungry season." Planting for the main harvest usually begins in October with the coming of the monsoon rains.

The researchers found that rice production since 1983 has been greatly affected by year-to-year climate variability-especially El Niño/Southern Oscillation events, which occur in the Pacific Ocean every two to seven years. During a warm El Niño, the arrival of the monsoon rains is delayed, prolonging the hungry season and disrupting the planting of the main December-January crop.

"During a bad El Niño event, farmers literally wait months before they can plant their crop, resulting in a harvest that is months late and often much smaller in size," Naylor said.

Climate change

After analyzing the recent record, the researchers focused on how climate change could affect rainfall and agriculture in Indonesia in the next 50 years. Using output from 20 global climate models tailored to the complex local topography of the Indonesian archipelago, the authors found that the probability of experiencing a harmful delay in monsoon rains could more than double in some of the country's most important rice-growing regions.

"Most models predict that the rains will come later in Indonesia, that it will rain a little harder once the monsoon begins and then it will really dry up during the summer months," said study co-author David Battisti, an atmospheric scientist at the University of Washington. "So Indonesia could be looking at a much shorter rainy season, with an almost rainless dry season in some areas, squeezing rice farmers on both ends."

While the study did not address how climate change could affect the frequency or intensity of El Niño events in the future, the authors concluded that even if there were no changes in the current El Niño pattern, Indonesian rice growers will face a significantly shortened rainy season. In the absence of adaptive measures, rice growers could suffer greatly, they said.

Adapting for change

What adaptive measures could be taken in the face of harmful short-term variability and long-term change in climate?

"In the short run, the science of El Niño prediction has advanced to the point that reasonably high-confidence forecasts are available at least two seasons in advance," said study co-author Marshall Burke, manager of the Program on Food Security and the Environment. "We have developed a forecasting model that's now being used by the Indonesian Agricultural Ministry to anticipate and plan for El Niño events and their effects on agriculture."

The authors also are working with Indonesian officials to develop longer-run strategies that address the anticipated effects of climate change on agriculture in the country. "Such strategies could include investments in water storage, development of drought-tolerant crops and crop diversification for those farmers at greatest risk," Burke added.

"To our knowledge, our study is the first climate-agriculture study that uses projections from all available global climate models to look at climate effects in a specific region," Battisti said. "Thus, more than past efforts, our study captures the range of uncertainty across different projections of future climate, knowledge which will be crucial for long-run thinking about how to respond."

Added Naylor: "From a scientific perspective, it's imperative that we now replicate this kind of study elsewhere in order to start building a more complete picture of the effects of climate change on agriculture." The researchers are conducting a similar study in China, she added.

Mark Shwartz | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>