Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How much nitrogen is too much for corn?

25.04.2007
Growers could cut back on fertilizer and reap economic and environmental benefits by using a rapid test recently discovered by scientists to accurately predict nitrogen levels

North Carolina State researchers recently discovered a test that quickly predicts nitrogen levels in the humid soil conditions of the southeastern United States. These scientists report that the Illinois Soil Nitrogen Test (ISNT) can assess the nitrogen levels in soil with more accuracy than current soil-based tests. This test will allow growers to cut back on the amount of nitrogen-based fertilizer added to soil, leading to economic and environmental benefits.

The proper management of nitrogen is critical to the success of many crop systems. Based on an assessment of the natural amount of nitrogen in soil, growers calculate their optimum nitrogen rates, the concentration of nitrogen that must be present in fertilizer in order to achieve expected crop yields. Under- and over-applying nitrogen fertilizer to corn crops often leads to adverse economic consequences for corn producers. Excess levels of nitrogen in nature also pose serious threats to environment. Agricultural application of nitrogen has been linked to rising nitrate levels and subsequent death of fish in the Gulf of Mexico and North Carolina’s Neuse River.

"Although offsite nitrogen contamination of ground and surface waters could be reduced if nitrogen rates were adjusted based on actual field conditions, there is currently no effective soil nitrogen test for the humid southeastern U.S.," said Jared Williams, lead author of the North Carolina State study that was published in the March-April 2007 issue of the Soil Science Society of America Journal. This research was supported in part by USDA Initiative for Future Agricultural and Food Systems (IFAFS) grant.

From 2001 to 2004, scientists collected and tested the soil from 35 different sites in North Carolina. According to the North Carolina scientists, the collected soil samples were representative of millions of hectares in agricultural production in the southeastern USA. Corn was planted at each site with a range of nitrogen fertilizer rates, and the optimum nitrogen rates and the soil assay results were compared among the sites.

From the collected samples, researchers discovered that the Illinois Soil Nitrogen Test (ISNT) could be used to accurately measure the economic optimum nitrogen rates (EONR) of southeastern soils, despite moderate weather variation over the collection period. While the test can be used to predict the optimum nitrogen rates, the relationship between ISNT and EONR varied by soil drainage class. Researchers believe that these differences represent differences in organic matter that lead to less mineralization and/or more denitrification on poorly drained soils. The results indicate that the Illinois Soil Nitrogen Test can serve as a model for predicting economic optimum nitrogen rates on well- and poorly drained soils and show promise as a tool for nitrogen management.

"Additional research is needed to calibrate and validate the EONR versus ISNT relationships under a wider variety of conditions," says Williams. "Because the Illinois Soil Nitrogen Test predicted EONR robustly to different cost/price ratios, ISNT has the potential to modify or replace current nitrogen recommendation methods for corn."

Sara Uttech | EurekAlert!
Further information:
http://www.crops.org
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>