Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green tomatoes’ future foretold

07.03.2002


Fruit’s hidden colour reveals whether it will ripen.



Some green tomatoes have a rosy future; others do not. A sensor that picks up subtle differences in the light the fruits reflect could sort future salads from greens.

Many tomatoes are picked green and bathed in ripening gas ethylene. Fruit picked too early will never ripen. Discerning consumers avoid them and growers lose out.


A scanner that analyses the wavelengths green tomatoes bounce back can predict those that ultimately will ripen, Frederico Hahn of the Centre for Investigation of Food, Sinaloa, Mexico, has shown1. Some of the world’s annual 60 million tonnes of tomatoes could be saved this way, he hopes.

"Maybe you can find some clues that ripening will happen," agrees Ian Young who is working on similar detectors at the Delft University of Technology in the Netherlands. "We’re looking for ways to do things that the market hasn’t even thought of," says Young.

Like Hahn, fruit sorting company Colour Vision Systems, in Bacchus Marsh, Australia, uses infrared spectroscopy to measure the sugar content of melons and stone fruit. The technology could be adapted for tomatoes, concedes one of their scientists Gary Brown, though, at present, it may be too expensive.

Colour coding

Some fruit packers already use automatic colour sorters to grade the ripeness of their fruit. Conventional cameras measure red, green and blue wavelengths emitted, and classify the produce before boxing. The United States Department of Agriculture has six official colour classifications: green, breaker, turning, pink, light red and red.

But to these cameras, one green tomato looks like another. So size, shape and internal appearance are used to judge when a green crop is on the turn.

Hahn’s sensor instead measures all wavelengths over a large part of the visible and invisible spectrum. He analysed 300 green Gabriela tomatoes before storing them for 10 days.

Fruit that never ripen emit more intensely at some infrared wavelengths on day one, he found. The green pigment chlorophyll has a characteristic emission of infrared light that changes during ripening, as chlorophyll degrades and red and yellow pigments called carotenoids accumulate.

Hahn used these key wavelengths to develop a ripeness predictor. It foretold maturity with over 85% accuracy on 600 fruit, for which visual inspection proved useless.

References
  1. Hahn, F. Multi-spectral prediction of unripe tomatoes. Biosystems Engineering, 81, 147 - 155, (2002).

HELEN PEARSON | © Nature News Service

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>