Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers from the UGR use a bacterium to obtain biopreservatives from food

18.04.2007
The research group “Estudio de sustancias antagonistas producidas por microorganismos” (Antagonistic substances produced by microorganisms), part of the Microbiology Department of the University of Granada (Universidad de Granada), has succeeded in isolating enterocin AS-48, which could have a medium-term use as food biopreservative. This represents a significant advance, given that biopreservation is an innovative method in food-preservation systems based on the use of microorganisms or their metabolic products to inhibit or destroy undesirable microorganisms.

Marina Sánchez Hidalgo, member of the research group and author of the doctoral thesis entitled ‘Caracterización de variantes de la enterocina AS-48 obtenidas mediante mutagénesis dirigida’ (Characterization of enterocin AS-48 variants via site-directed mutagenesis), explains that AS-48 is a bacteriocin (protein substance with antimicrobial activity) produced by Enterococcus faecalis S-48. “The bacteriocin is characterized by its circular structure —that is, because of the joining of its ends— contrary to most of proteins, which have a beginning and an end." AS-48 is very stable with respect to pH and temperature and has a broad action spectrum against numerous bacteria, including pathogenic bacteria transmitted by food, “which makes it a suitable molecule to use as a biopreservative."

The research carried out at the UGR will complete the information concerning the way that bacteriocins act on bacterial membranes and will also help in designing antimicrobial molecules with new characteristics. “Our work,” states Marina Sánchez, “has determined which AS-48 amino acids are essential for membranestability and biological activity, and it has also helped us understand how this molecule permeabilizes bacterial membranes.”

Competition for nutrients

Over the course of evolution, microorganisms have developed several strategies to compete for nutrients in their environment. One of these strategies is to produce antimicrobial compounds such as antibiotics, certain metabolism products, lytic agents, numerous types of protein exotoxins, and bacteriocins. It has become increasingly more necessary to find new antimicrobial agents because of the stronger resistance acquired by bacteria. Researcher Sánchez Hidalgo points out that natural antimicrobial cationic peptides such as bacteriocins “represent a good alternative.”

Bacteriocins are proteins that are biologically active against members of the same species or species closely related to the producing bacterium. Some noteworthy bacteriocins those produced by lactic-acid bacteria (LAB), as they have been used to prepare fermented food, improve quality, and extend the average duration of many foods for centuries.

The work presented in the doctoral thesis approaches the molecular aspects of the permeabilization that AS-48 exerts on bacterial membranes. “We designed a strategy to carry out site-directed mutagenesis on the as-48A gene, the one which generates enterocin AS-48”, the researcher from Granada pointed out, “and we have studied the role of seven amino acids that could be involved in biological activity and in the hydrophobic nature and thermodynamic stability of the molecule. We made this study by changing the amino acids into others with different properties."

The results of this work made it possible to conclude that while some of the mutated amino acids are essential for biological activity, others improve AS-48 biotechnological characteristics. During the process of obtaining mutated amino acids, it was also determined that three out of the ten genes involved in the production of AS-48 express themselves together. The research also determined the way of that these genes are regulated and expressed as well.

The results of this work will soon be published in the respected publications Journal of Bacteriology and Applied and Environmental Microbiology.

Antonio Marín Ruiz | alfa
Further information:
http://www.ugr.es
http://prensa.ugr.es/prensa/research/index.php

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>