Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite images aid implementation of agricultural reforms

16.04.2007
An ESA-backed project has demonstrated how Earth observation satellites can assist in the cross compliance measures – a set of environmental and animal welfare standards that farmers have to respect to receive full funding from the European Union – included in the 2003 reforms of the Common Agricultural Policy.

Using very high resolution (VHR) satellite images for monitoring whether land is safeguarded in Good Agricultural and Environmental Condition (GAEC), as outlined within the cross-compliance framework, ensures subsidies are distributed in a fair and timely manner and helps farmers complete subsidy applications more accurately.

High resolution satellites as well as aerial photography have been used for some time to monitor areas where subsidies are provided. VHR Earth observation (EO) satellites, however, offer more detail compared with HR satellites and are capable of identifying various landscape features and detecting potential erosion, tillage practices and maintenance of pastures.

Under the GAEC standards implemented in some countries, farmers cannot remove certain landscape features, including hedges, tree rows, water ponds, walls and single trees, without authorisation of national administration in order to preserve habitats for different organisms and species.

By using special classification procedures on VHR satellite images, identification of these landscape features is possible. In combination with digital aerial images, even single trees can be delineated. By comparing older and recent images of these same areas with the processed ‘reference landscape feature’ layer, the removal of these features can be detected.

To protect soils against erosion risks and improve soil structure, the GAEC as applied in some countries, states farmers must establish an ‘environmental cover’ for a buffer width, stipulated by the country itself (e.g. 5 metres), around waterways on all parcels adjacent to waterways to restrict diffuse pollution in waters and soils.

Pastures, permanent crops, woods, hedges and paths are considered ‘environmental cover’, while mainly arable land and crops are not. Because satellite images allow for the interpretation of agricultural parcels, compliancy can be easily detected. Photo interpretation by remote sensing speeds up the process and allows many parcels to be checked in one time.

Tillage practices are also important for reducing erosion as they can reduce the runoff of water across the land surface. The GAEC stipulates that farmers have to plough or plant parallel to contour lines to avoid erosion on slopes more than or equal to a certain percentage defined by the country (e.g. slope of 10 percent).

By detecting parcels within this slope range, detecting the slope direction and the ploughing or planting direction, it is possible to calculate the angle between the slope and ploughing direction, taking into account the soil-sensitivity to erosion, and determine whether the farmer is compliant.

In order to receive subsidies for permanent crops, the GAEC requires that farmers properly maintain them. Using VHR images, the distinction between crops that are ‘maintained good’ and crops that are ‘possibly maintained badly’ can be detected, allowing authorities to visit the fields in question to detect whether they are abandoned or neglected.

This project was funded by ESA’s Earth Observation Market Development (EOMD) programme, aimed at fostering the development of EO data within business practices, and carried out by EUROSENSE, a company that specialises in remote sensing.

Mariangela D'Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEMO5MLJC0F_economy_0.html

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>