Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fertilizers help Zimbabwean farmers to increase crop yields

16.04.2007
A little bit of manure and fertilizer can considerably improve the perspectives of Zimbabwean smallholder farmers in semi-arid regions. Nitrogen availability was found to be the factor that most limited farmers’ efforts to increase cereal yields. Dutch-sponsored researcher Bongani Ncube demonstrated this after four years of research on smallholder farms of her home country.

Ncube studied smallholder farms in the southwest of Zimbabwe. She mapped resource flows and carried out field experiments. The Zimbabwean semi-arid regions are dry and farmers face food shortages every season. Yet not water management but the supply of fertilizer, especially nitrogen, was found to be the most important factor in increasing cereal yields. Zimbabwean farmers in the semi-arid regions hardly use fertilizer and manure at present. Chemical fertilizer is expensive and manure is not readily available. Moreover, little is known about the correct use of these nutrient sources in dry climates.

Nitrogen

The main issue when cultivating soil is the nitrogen balance. Continually cultivating the same crop disrupts this balance. With field experiments, Ncube demonstrated that a little bit of basal manure, and nitrogen fertilizer added as top dressing improved the maize yield by about one-hundred percent in a good rainy season and by up to fifty percent in drier seasons.

Crop rotation

Crop rotation is another option that could provide a lot of benefit according to Ncube. This is the cultivation of different crops alternately in successive years. Leguminous crops, for example, fix nitrogen. This nitrogen remains in the soil and is taken up during the next season by sorghum, a type of grain that grows well in dry areas. Ncube proved that grain legumes can be grown successfully under the semi-arid conditions in Zimbabwe. These legumes were able to leave enough nitrogen in the ground, which doubled yields of sorghum the following season compared to sorghum-sorghum rotations. With a simulation model Ncube was once again able to show that nitrogen availability was more important in the rotation. These types of treatments often have a negative impact on water availability, yet here nitrogen was shown to be more important.

Bongani Ncube’s research was funded by NWO.

Bongani Ncube | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOA_6ZHJK9_Eng

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>