Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

East Africa small-scale cereal farmers receive major boost

13.04.2007
The Swiss-based BioVision, Kilimo Trust Uganda and the Nairobi-headquartered icipe – African Insect Science for Food and Health, have recently achieved a major milestone towards maximising maize and sorghum production, while improving the health and income of small-scale farmers in East Africa.

This follows the collaboration of these organisations towards the development of a curriculum for Farmers Field Schools (FFS) on the icipe’s ‘push-pull’ technology, an innovative strategy, which simultaneously combats stemborer moths, striga weeds, and poor soil fertility. Stemborers and striga together can, if not controlled, lead to as much as 100% yield losses of maize. As a result, although maize is the most important staple food in sub Saharan Africa (SSA), the region’s average per hectare yield of this cereal is the lowest in the world, and far below the population’s needs. Maize harvests that would be saved by controlling these two pests could feed an additional 27 million people in SSA.

Unfortunately, small-scale farmers who contribute more than 80% of the continent’s maize production often lack the money to buy synthetic pesticides, which are in any case not only harmful to the environment, but usually ineffective as well.

‘Push-pull’ is the result of a 10-year quest by Rothamsted Research, United Kingdom in collaboration with the Nairobi-headquartered icipe – African Insect Science for Food, Kenya’s Ministry of Agriculture, livestock and fisheries to provide such farmers with environmentally-friendly and sustainable methods to control these two pests.

The strategy uses a novel combination of forage plants which, when intercropped with cereals, act as both a trap and a repellent for stemborers and striga. The two plants so far employed by icipe are Napier grass, which attracts the moths, and desmodium, which produces semiochemicals that repel stemborers. Napier, planted as a border around the main crop, ‘pulls’ them away from the cereal and leaving it protected Desmodium is planted intimately within the rows of maize or sorghum to ‘push’ the pests. In addition, the roots of desmodium generate several isoflavones, some of which inhibit the germination, while others prevent the attachment of striga seeds to the root of the cereal.

Currently, more than 7000 farmers in 19 districts in Kenya and in five districts in Uganda are practising push-pull, while training demonstrations have started in Tanzania. In these sites, ‘push-pull’ has increased maize yields by an average of 25% in areas where only stemborers are present, and by more than 80% where both stemborers and striga are a problem. In addition, ‘push-pull’ has contributed to the augmentation of livestock production, especially on small farms where pressure on land is high, since both napier grass and desmodium provide quality fodder for livestock. Importantly too, the technology increases soil fertility as desmodium has nitrogen-fixing and moisture retention qualities.

The recently launched ‘push-pull’ curriculum is based on the realisation that poor dissemination of research technologies is partly to blame for continuing decline in agricultural productivity, and the increasing poverty among small-holder farmers in SSA. The aim of the collaborating institutions, therefore, is to expand the ‘push-pull’ technology to as many farmers as possible, taking into account its knowledge intensive nature and the need to guide end-users in learning its principles and practices. The curriculum will also be an important resource for the national extension system, the NGOs and the Community Based Organisations (CBOs).

The curriculum is a product of input from several individuals and organisations in the region, including farmers, research scientists, agricultural extension officers, practitioners from Non Governmental Organisations and donors.

Liz Nganga | alfa
Further information:
http://www.push-pull.net
http://www.icipe.org

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>