Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Counting Heads or Measuring Space? - A Close Look at Bacterial Communication Strategies

03.04.2007
Bacteria can “talk” to each other: by using signal substances they inform their neighbours as to whether or not it is worth switching certain genes on or off. This communication between bacterial cells is essential for the adaptation to changing environments and for the survival.

What exactly do bacteria learn from the signal substances? There have been two theories: the release of signal substances is understood to be either a cooperative strategy to determine the cell density (quorum sensing) or – alternatively – a non-cooperative strategy in which the signal substance is only used to determine the dimensions of the space surrounding the cell (diffusion sensing). However, both theories have not been shown to work under natural conditions, which usually are much more complex than those in laboratory.

Scientists from the GSF – National Research Center for Environment and Health (member of the Helmholtz-Gemeinschaft) have been able to show that both approaches are merely theoretical extremes of an overall strategy by which bacteria determine whether the amount of energy required to produce substances, such as antibiotics or exoenzymes, is worth while in a particular environmental situation. “This overall strategy – called efficiency sensing – combines existing theories and first allows an understanding of how bacterial communication works and which purpose it serves”, explains Dr. Burkhard Hense from the GSF Institute of Biomathematics and Biometry (IBB), who analysed the various strategies using mathematical models.

Microbial communication was first discovered in mixed liquid laboratory cultures, e.g. of the luminescent bacterium Vibrio fischeri, which only shows bioluminescence from a certain cell density. Therefore, the release of signal molecules was first understood as a strategy to determine the cell density (quorum sensing). With its cooperative approach, however, quorum sensing does not provide a stable survival strategy from an evolutionary point of view, because "cheaters" can also benefit from the released substances without having to pay for their production. The approach of diffusion sensing is slightly simpler: it is assumed that the bacterium uses the signal substances to measure whether the cell sourrounding space is adequate to achieve the concentration of active substances required for efficient action. This is in contrast to the quorum sensing concept, when other bacteria do not necessarily have to be involved.

In a more complex and heterogeneous environment, such as the root compartment of plants, however, both communication strategies have their weaknesses: the root surface is a highly complex matrix in which solids, gels, liquids and gases are found within a small space and where numerous other organisms interfere with the communication on top of that. Therefore, within the framework of the interdisciplinary project “Molecular Interactions in the Rhizosphere” Hense and his colleagues of the GSF-Institute of Biomathematics and Biometry (IBB) investigated this habitat in cooperation with Professor Dr. Anton Hartmann and Dr. Michael Rothballer from the GSF Department Microbe-Plant-Interaction ( AMP).

Based on experimental observations, it could be shown by mathematical modelling that the spatial distribution of the bacteria in the rhizosphere often has a stronger influence on the communication than the cell density or the dimensions of the space surrounding them. Therefore, the scientists developed a synthesis of the two models, which they named “efficiency sensing”: the microbes always perceive a mixture of cell density, cell distribution and diffusion limitation due to spatial conditions, because these aspects cannot be strictly separated – it depends on the circumstances and habitat quality which aspect is predominant. The problem of the “cheaters“ is also avoided, if the spatial distribution of the cells is taken into consideration: on root surfaces or in biofilms related organisms often form clonal micro-colonies. Since in this case all relatives are in the immediate proximity, they are also most likely to encounter the signal substances and the reactions triggered by the signal substances – strangers are largely excluded. Thus, such aggregations of closely related cells allow stable cooperation in terms of evolution and offer effective protection from external interference.

“Efficiency sensing was developed based on observations and models of the conditions on root surfaces, but it can be transferred to other bacterial habitats”, Hense emphasizes. Therefore, manipulations of the bacterial signal system are a highly promising approach in various spheres of life, e.g. in agriculture (support of plant-growth-promoting bacteria, inhibition of noxious organisms) or in medicine (fighting pathogens). A better understanding of the ecological mechanisms of bacterial signaling under natural conditions, as is possible with the “efficiency sensing” concept, is a prerequisite for this.

Michael van den Heuvel | alfa
Further information:
http://www.gsf.de/neu/Aktuelles/Presse/2007/bakterielle-kommunikation_en.php

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>