Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Counting Heads or Measuring Space? - A Close Look at Bacterial Communication Strategies

03.04.2007
Bacteria can “talk” to each other: by using signal substances they inform their neighbours as to whether or not it is worth switching certain genes on or off. This communication between bacterial cells is essential for the adaptation to changing environments and for the survival.

What exactly do bacteria learn from the signal substances? There have been two theories: the release of signal substances is understood to be either a cooperative strategy to determine the cell density (quorum sensing) or – alternatively – a non-cooperative strategy in which the signal substance is only used to determine the dimensions of the space surrounding the cell (diffusion sensing). However, both theories have not been shown to work under natural conditions, which usually are much more complex than those in laboratory.

Scientists from the GSF – National Research Center for Environment and Health (member of the Helmholtz-Gemeinschaft) have been able to show that both approaches are merely theoretical extremes of an overall strategy by which bacteria determine whether the amount of energy required to produce substances, such as antibiotics or exoenzymes, is worth while in a particular environmental situation. “This overall strategy – called efficiency sensing – combines existing theories and first allows an understanding of how bacterial communication works and which purpose it serves”, explains Dr. Burkhard Hense from the GSF Institute of Biomathematics and Biometry (IBB), who analysed the various strategies using mathematical models.

Microbial communication was first discovered in mixed liquid laboratory cultures, e.g. of the luminescent bacterium Vibrio fischeri, which only shows bioluminescence from a certain cell density. Therefore, the release of signal molecules was first understood as a strategy to determine the cell density (quorum sensing). With its cooperative approach, however, quorum sensing does not provide a stable survival strategy from an evolutionary point of view, because "cheaters" can also benefit from the released substances without having to pay for their production. The approach of diffusion sensing is slightly simpler: it is assumed that the bacterium uses the signal substances to measure whether the cell sourrounding space is adequate to achieve the concentration of active substances required for efficient action. This is in contrast to the quorum sensing concept, when other bacteria do not necessarily have to be involved.

In a more complex and heterogeneous environment, such as the root compartment of plants, however, both communication strategies have their weaknesses: the root surface is a highly complex matrix in which solids, gels, liquids and gases are found within a small space and where numerous other organisms interfere with the communication on top of that. Therefore, within the framework of the interdisciplinary project “Molecular Interactions in the Rhizosphere” Hense and his colleagues of the GSF-Institute of Biomathematics and Biometry (IBB) investigated this habitat in cooperation with Professor Dr. Anton Hartmann and Dr. Michael Rothballer from the GSF Department Microbe-Plant-Interaction ( AMP).

Based on experimental observations, it could be shown by mathematical modelling that the spatial distribution of the bacteria in the rhizosphere often has a stronger influence on the communication than the cell density or the dimensions of the space surrounding them. Therefore, the scientists developed a synthesis of the two models, which they named “efficiency sensing”: the microbes always perceive a mixture of cell density, cell distribution and diffusion limitation due to spatial conditions, because these aspects cannot be strictly separated – it depends on the circumstances and habitat quality which aspect is predominant. The problem of the “cheaters“ is also avoided, if the spatial distribution of the cells is taken into consideration: on root surfaces or in biofilms related organisms often form clonal micro-colonies. Since in this case all relatives are in the immediate proximity, they are also most likely to encounter the signal substances and the reactions triggered by the signal substances – strangers are largely excluded. Thus, such aggregations of closely related cells allow stable cooperation in terms of evolution and offer effective protection from external interference.

“Efficiency sensing was developed based on observations and models of the conditions on root surfaces, but it can be transferred to other bacterial habitats”, Hense emphasizes. Therefore, manipulations of the bacterial signal system are a highly promising approach in various spheres of life, e.g. in agriculture (support of plant-growth-promoting bacteria, inhibition of noxious organisms) or in medicine (fighting pathogens). A better understanding of the ecological mechanisms of bacterial signaling under natural conditions, as is possible with the “efficiency sensing” concept, is a prerequisite for this.

Michael van den Heuvel | alfa
Further information:
http://www.gsf.de/neu/Aktuelles/Presse/2007/bakterielle-kommunikation_en.php

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>