Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover how poppies prevent inbreeding

26.03.2007
Scientists at the University of Birmingham have uncovered how the field poppy prevents self-pollination, a form of inbreeding that if unchecked would result in a shrinking gene pool and unhealthy offspring.

The researchers, led by Professor Vernonica Franklin-Tong, have found that the poppy use a common 'enzyme switch', phosphorylation, as one of its key weapons to prevent self-pollination. The work is a significant step in understanding a key mechanism in plant biology and could provide a major boost for plant breeders.

Most flowering plants run the risk of pollinating themselves, rather than receiving pollen from another plant via an insect. The basic anatomy of many plants means pollen sacs are situated right next to the female reproductive parts. Accidental self-fertilization is a real risk. When a flowering plant is pollinated the pollen germinates and develops a pollen tube which grows through the stigma and female tissues and then enters the plant's ovary to effect fertilization. The Birmingham team, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), has found that when genetically identical pollen comes into contact with the field poppy's stigma, it triggers several chemical signals for inhibiting growth of the pollen tube. With tube growth halted fertilization cannot take place.

By adding phosphate to key enzymes involved in pollen tube development the plant effectively stops the pollen tube from growing, explains Professor Franklin-Tong at the University's School of Biosciences.

"Most plants require pollen from another plant to successfully pollinate. Accidental self-pollination would lead to unhealthy and less successful offspring. To avoid this plants need robust ways to stop self-pollinating activity," says Franklin-Tong.

"Our research has found that the field poppy has developed a particularly successful way of doing this. Pollen tubes require high metabolic activity, so inhibiting a key enzyme involved in driving these "high metabolism" processes is a very successful way of stopping pollen tube growth."

A better understanding of plant mechanisms against self-pollination could improve plant breeding. The possibility of selectively switching the self-pollination control on or off could make it much easier and cheaper to produce hybrid plants and seed.

Professor Franklin-Tong comments: "At the moment plant breeders must use expensive and time-consuming manual techniques to ensure new strains of plants do not self-pollinate. This is to ensure the traits they want come from both parent plants. If we could switch on the mechanism to guard against self-pollination we could drastically reduce the cost and time of developing new plant varieties."

Press Office | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>