Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Africa: working towards aflatoxin-resistant groundnut varieties

Groundnut is of undeniable nutritional importance in the Sahel countries, where few crops have as many nutritional or financial advantages. However, it is susceptible to aflatoxin, a highly toxic substance produced by the fungus Aspergillus flavus.

Infection is favoured by water stress towards the end of the cycle, and African regions regularly hit by drought, such as Senegal, Niger and Mali, are thus at particular risk. This brings serious health risks, such as liver cancer, as local populations may consume large quantities of contaminated products. Moreover, with the tightening of European health regulations, the export value of groundnut has dropped considerably, which means a financial risk for the countries concerned. To reverse this trend, it is vital to prevent contamination in the field and at every stage of marketing.

However, until now, varietal breeding programmes have failed to develop groundnut cultivars that are aflatoxin resistant and at the same time have high agronomic potential. In an attempt to find a solution, researchers are studying how the plant's resistance mechanisms work in the event of drought. To this end, a European project entitled "New tools for groundnut aflatoxin control in Sahel Africa", headed by CIRAD, has just been completed. In particular, it enabled the development of methodologies for improving varietal screening and growing groundnut under rainfed conditions, to reduce aflatoxin contamination both in the field and postharvest.

Groundnut seed ripening rate: a key criterion

Two reference varieties were chosen for study: a cultivar that gives average yields under drought conditions but has good aflatoxin resistance, and another that is higher-yielding but more susceptible to the fungus. Both varieties are widely distributed in Senegal and a large part of sub-Sahelian Africa. The approach taken consisted in studying them under different environmental conditions: under water stress, in the field, in glasshouses, etc. The researchers studied the varieties on an agronomic and physiological, and also biochemical and molecular, level.

One of the main results of the project concerned seed ripening rate: this is a key criterion in groundnut tolerance of aflatoxin contamination. Short-cycle varieties that produce small seeds that ripen quickly are more resistant. Moreover, water stress towards the end of the cycle disrupts the lipid metabolism of the susceptible cultivar more than that of the resistant cultivar. Fatty acid composition differs depending on whether or not the variety is aflatoxin-resistant, and the fatty acid metabolism can thus be assumed to be another parameter linked to groundnut resistance mechanisms prior to harvest.

With a view to groundnut varietal improvement, five genes of interest in terms of aflatoxin resistance were identified, cloned and studied. For most of them, this was the first time they had been sequenced and studied in groundnut. Some are involved in the lipid metabolism. The results suggest that groundnut has cell protection mechanisms to limit damage due to the dry season. Moreover, once water is available again, the crop has repair mechanisms. A study of expression of these five genes showed that they were all regulated by the water deficit. Moreover, transgenesis techniques are available for groundnut that could be used to integrate them into the varieties to be improved.

Good agricultural practice to prevent contamination

Furthermore, varieties with improved drought resistance have been developed from an aflatoxin-resistant parent and are currently being disseminated within the production zone. Various studies of good practices that may control contamination before and after harvest have been conducted in conjunction with farmers. They revealed a change in product degradation as it makes its way along the production chain. As a result, the researchers opted to set up a contamination risk analysis system, based on the "from farm to fork" concept, at every stage of the production chain, from production to marketing. In particular, the system concerns the choice of variety, treating crop storage facilities against infestation and the effect of using quicklime or manure to control infestation.

The results of this work are already being applied through an operation to develop a quality groundnut production chain in Senegal. The approach taken is participatory and based on analysing market demand (local industry, the export market, etc). One of the aims is to implement a system of fair contracts between producers' organizations and the private sector, so as to optimize market value. The operation is being led by CIRAD, in partnership with the main Senegalese producers' organization (ASPRODEB), with European Union funding.

Helen Burford | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>