Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Africa: working towards aflatoxin-resistant groundnut varieties

16.03.2007
Groundnut is of undeniable nutritional importance in the Sahel countries, where few crops have as many nutritional or financial advantages. However, it is susceptible to aflatoxin, a highly toxic substance produced by the fungus Aspergillus flavus.

Infection is favoured by water stress towards the end of the cycle, and African regions regularly hit by drought, such as Senegal, Niger and Mali, are thus at particular risk. This brings serious health risks, such as liver cancer, as local populations may consume large quantities of contaminated products. Moreover, with the tightening of European health regulations, the export value of groundnut has dropped considerably, which means a financial risk for the countries concerned. To reverse this trend, it is vital to prevent contamination in the field and at every stage of marketing.

However, until now, varietal breeding programmes have failed to develop groundnut cultivars that are aflatoxin resistant and at the same time have high agronomic potential. In an attempt to find a solution, researchers are studying how the plant's resistance mechanisms work in the event of drought. To this end, a European project entitled "New tools for groundnut aflatoxin control in Sahel Africa", headed by CIRAD, has just been completed. In particular, it enabled the development of methodologies for improving varietal screening and growing groundnut under rainfed conditions, to reduce aflatoxin contamination both in the field and postharvest.

Groundnut seed ripening rate: a key criterion

Two reference varieties were chosen for study: a cultivar that gives average yields under drought conditions but has good aflatoxin resistance, and another that is higher-yielding but more susceptible to the fungus. Both varieties are widely distributed in Senegal and a large part of sub-Sahelian Africa. The approach taken consisted in studying them under different environmental conditions: under water stress, in the field, in glasshouses, etc. The researchers studied the varieties on an agronomic and physiological, and also biochemical and molecular, level.

One of the main results of the project concerned seed ripening rate: this is a key criterion in groundnut tolerance of aflatoxin contamination. Short-cycle varieties that produce small seeds that ripen quickly are more resistant. Moreover, water stress towards the end of the cycle disrupts the lipid metabolism of the susceptible cultivar more than that of the resistant cultivar. Fatty acid composition differs depending on whether or not the variety is aflatoxin-resistant, and the fatty acid metabolism can thus be assumed to be another parameter linked to groundnut resistance mechanisms prior to harvest.

With a view to groundnut varietal improvement, five genes of interest in terms of aflatoxin resistance were identified, cloned and studied. For most of them, this was the first time they had been sequenced and studied in groundnut. Some are involved in the lipid metabolism. The results suggest that groundnut has cell protection mechanisms to limit damage due to the dry season. Moreover, once water is available again, the crop has repair mechanisms. A study of expression of these five genes showed that they were all regulated by the water deficit. Moreover, transgenesis techniques are available for groundnut that could be used to integrate them into the varieties to be improved.

Good agricultural practice to prevent contamination

Furthermore, varieties with improved drought resistance have been developed from an aflatoxin-resistant parent and are currently being disseminated within the production zone. Various studies of good practices that may control contamination before and after harvest have been conducted in conjunction with farmers. They revealed a change in product degradation as it makes its way along the production chain. As a result, the researchers opted to set up a contamination risk analysis system, based on the "from farm to fork" concept, at every stage of the production chain, from production to marketing. In particular, the system concerns the choice of variety, treating crop storage facilities against infestation and the effect of using quicklime or manure to control infestation.

The results of this work are already being applied through an operation to develop a quality groundnut production chain in Senegal. The approach taken is participatory and based on analysing market demand (local industry, the export market, etc). One of the aims is to implement a system of fair contracts between producers' organizations and the private sector, so as to optimize market value. The operation is being led by CIRAD, in partnership with the main Senegalese producers' organization (ASPRODEB), with European Union funding.

Helen Burford | alfa
Further information:
http://www.cirad.fr/en/actualite/communique.php?id=644

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>