Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earlier, more consistent mango production

16.03.2007
Mango flowering and production in Réunion alternates: production levels are only high every other year. Another drawback is that production centres on a four-month period, from November to February, with a peak in December that pushes prices down.

These two constraints are about to be lifted, thanks to research by a CIRAD team working on integrated fruit and horticultural production in Réunion. Over the past six years, its researchers have been working to understand the flowering mechanism in mango*. The aim is to guarantee growers a more consistent income by sustaining production from one year to the next, and also to ensure that mangoes come onto the market, particularly the export market, earlier, by managing harvesting dates more efficiently and ensuring better crop distribution throughout the season.

Reducing the inflorescence and fruit load

The researchers first showed that the alternate production pattern was linked to a similar pattern in terms of the trees' carbon, ie energy, reserves. In a productive year, the many fruits draw sugars from the trees' carbon reserves, particularly in the fruiting branches but above all in the roots. The following year, the trees have lower carbon reserves, which may account for their poor flowering and resulting lower production. Hence to ensure more consistent mango production from year to year, the team suggests reducing inflorescence and fruit load, to prevent exhaustion of the trees' carbon reserves.

As regards controlling the flowering date, the team has shown that vegetative growth, flowering and fruiting are closely linked: "Their intensity and evolution over time depend on the characteristics of the growth units [stem section that appears during a given growth period, editor's note] that are likely to branch, flower or bear fruit", explains Frédéric Normand. Vegetative growth control techniques, such as pruning or thinning, could thus encourage flowering and modify the flowering date.

Solutions to be tested

These advances mean that it is now possible to test new mango cropping management methods, under a collaborative development project funded by the Ministry of Agriculture and Fisheries**. The project is to be led by CIRAD, and will start in March 2007. The agronomic component of the project is intended to reduce production alternation, control harvesting dates and improve fruit quality. It should also make it possible to test the solutions proposed based on previous results. The new project will also attempt to cut pesticide use by controlling another phenomenon: asynchronized flowering, vegetative growth and fruiting. The idea is to concentrate each of these generally lengthy phases over a shorter period, to ensure that the leaves, flowers and fruits are not exposed to pests and diseases for such a long time. This is crucial for producing better quality fruits in a more ecofriendly way.

Helen Burford | alfa
Further information:
http://www.cirad.fr/en/actualite/communique.php?id=641

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>