Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earlier, more consistent mango production

16.03.2007
Mango flowering and production in Réunion alternates: production levels are only high every other year. Another drawback is that production centres on a four-month period, from November to February, with a peak in December that pushes prices down.

These two constraints are about to be lifted, thanks to research by a CIRAD team working on integrated fruit and horticultural production in Réunion. Over the past six years, its researchers have been working to understand the flowering mechanism in mango*. The aim is to guarantee growers a more consistent income by sustaining production from one year to the next, and also to ensure that mangoes come onto the market, particularly the export market, earlier, by managing harvesting dates more efficiently and ensuring better crop distribution throughout the season.

Reducing the inflorescence and fruit load

The researchers first showed that the alternate production pattern was linked to a similar pattern in terms of the trees' carbon, ie energy, reserves. In a productive year, the many fruits draw sugars from the trees' carbon reserves, particularly in the fruiting branches but above all in the roots. The following year, the trees have lower carbon reserves, which may account for their poor flowering and resulting lower production. Hence to ensure more consistent mango production from year to year, the team suggests reducing inflorescence and fruit load, to prevent exhaustion of the trees' carbon reserves.

As regards controlling the flowering date, the team has shown that vegetative growth, flowering and fruiting are closely linked: "Their intensity and evolution over time depend on the characteristics of the growth units [stem section that appears during a given growth period, editor's note] that are likely to branch, flower or bear fruit", explains Frédéric Normand. Vegetative growth control techniques, such as pruning or thinning, could thus encourage flowering and modify the flowering date.

Solutions to be tested

These advances mean that it is now possible to test new mango cropping management methods, under a collaborative development project funded by the Ministry of Agriculture and Fisheries**. The project is to be led by CIRAD, and will start in March 2007. The agronomic component of the project is intended to reduce production alternation, control harvesting dates and improve fruit quality. It should also make it possible to test the solutions proposed based on previous results. The new project will also attempt to cut pesticide use by controlling another phenomenon: asynchronized flowering, vegetative growth and fruiting. The idea is to concentrate each of these generally lengthy phases over a shorter period, to ensure that the leaves, flowers and fruits are not exposed to pests and diseases for such a long time. This is crucial for producing better quality fruits in a more ecofriendly way.

Helen Burford | alfa
Further information:
http://www.cirad.fr/en/actualite/communique.php?id=641

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>