Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Color analysis rapidly predicts carbon content of soil

13.03.2007
Scientists report in the Soil Science Society of America Journal that soil color can be as accurate as the lab for carbon content

Scientists at Iowa Sate University recently discovered that simply looking at soil color is reasonably as accurate as time-consuming and expensive laboratory tests. Soil color can be used as a simple, inexpensive method to predict measurements of soil organic content (SOC). These measurements provide a lens through which researchers can assess soil quality and better understand global carbon cycles. Proper modeling of global carbon cycles and monitoring of carbon sequestration require wide-spread, accurate assessments of soil carbon contents.

The researchers compared field and laboratory measurements to determine the color and the organic content of soil samples from cultivated and native land in northeast Iowa.

"Soil color is one of the most obvious features of soil and organic matter has long been known as one of the primary pigmenting agents in soil," said Skye Willis, lead author of the Iowa State study that was published in the March-April issue of the Soil Science Society of America Journal.

Soil field descriptions made in the U.S. are based upon the Munsell color system – field scientists match soil color to standardized color chips based upon hue, chroma, and value. Additional laboratory tests, such as the chroma meter, offer rapid quantification of soil color. In general, darker soil colors indicate more SOC is present.

To test the efficiency of color analysis as a measure of SOC content on different landscapes, scientists collected soil samples from an agricultural field and an adjacent native prairie in northeast Iowa. Scientists analyzed the color of soil samples using three tests:

- Soil cores were split in half and matched to a color chip in a Munsell Soil Color Book

- The matrix color of soil layers were described according to Munsell Soil Book

- Soil was ground and analyzed by a chroma meter, an instrument used to digitally record the color reflectance of soil sample.

From these three assessments, scientists determined the soil color (represented by hue, value and chroma) and predicted the SOC content.

According to Willis, "We found that typical description colors done by a soil scientist were nearly as effective in predicting SOC as the more expensive and tedious method of deriving colors by a chroma meter."

Color analysis is capable of predicting SOC values more accurately in common land areas (agricultural fields) in comparison to less common land areas (native prairies). Additional studies are needed to better predict SOC under native soil conditions.

This rapid SOC measurement will increase the understanding, prediction, and modeling efficiency of carbon distribution across fields, watersheds, and larger regions as the current methods of characterizing SOC are costly and time-consuming. As an alternative to direct measurements of SOC, soil color can be used as an efficient predictor of SOC soil contents.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org
http://www.crops.org
http:// www.soils.org

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>