Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secret of Worm’s Poison Pill Box Protein Could Produce New Natural Insecticide

13.03.2007
Researchers at the University of Warwick have discovered how a protein from a bacterium acts like a cunningly designed poison pill box that could now be used as a basis of a new range of natural insecticides.

It had been known that nematode worms can infect and kill insect pests with the help of a bacterium which they harbour inside their intestine.

The bacterium uses a protein (XptA1) a toxin which helps the nematode to kill and feed on the dead body of the insect. The toxin not only kills the target insect but prevents other predators from eating the body giving free reign to the nematode worms to consume it, multiply and move on. However, until now, researchers had little idea of the make up of XptA1 and thus how it worked. The research team, based at the University of Warwick’s horticultural research arm Warwick HRI, have now been able to reveal the shape of the protein XptA1 and discovered a number of properties that make it a particularly efficient natural insecticide and possible alternative to some commercial insecticides that are facing increased resistance in the insect populations they target.

The researchers at Warwick HRI, together with a team of colleagues with expertise in the Structural Biology group in Biological Sciences and in Chemistry at The University of Warwick, as well as Coventry and Nottingham Universities, found that the protein was formed from four sub units in the shape of a hollow cage or box which is configured to bind well to part of a caterpillar’s gut called “Brush Border Membrane Vesicles” (BBMV).

The XptA1 protein seemed to specifically target the BBMV of caterpillars Pieris Brassicae – (The cabbage white butterfly caterpillar which are pests for many growers). The hollow box structure appears to be a key element of the protein’s design. The hollow shape allows the protein to act as a receptacle for two other proteins (in the case of XptA1 these are XptB1 and XptC1). This forms a poison “complex” which makes the XptA1 300 times more toxic to the caterpillars than it would be by itself. As well as helping collect together the three proteins and attach them to the insect’s gut the researchers think that the box shape of the XptA1 protein possibly also helps protect the poison complex from the acid attack they would face from the high pH values in the insect gut. The researchers also discovered that, while XptA1 was highly selective in that it bound to the cabbage white butterfly caterpillar, there were variants of this family of toxic proteins (such as XptA2) that targeted other insects.

Dr Sarah Lee from the University of Warwick said: “This research gives us crucial new insights into a family of naturally occurring proteins that are toxic to a number of insect pests. They offer an alternative to current commercial protein based insect toxins have been in use for 40 years and are now starting to meet some resistance. This potential new family of protein based insecticides would overcome such resistance as they operate in an entirely different way”

The research has been published in the 9th March issue of The Journal of Molecular Biology Volume 366 Issue 5 pages 1558 – 1568. The paper is titled “Structural Characterisation of the Insecticidal Toxin XptA1, Reveals a 1.15 MDa Tetramer with a Cage-like Structure”

Peter Dunn | alfa
Further information:
http://www2.warwick.ac.uk/newsandevents/pressreleases/secret_of_worms/

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>