Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secret of Worm’s Poison Pill Box Protein Could Produce New Natural Insecticide

13.03.2007
Researchers at the University of Warwick have discovered how a protein from a bacterium acts like a cunningly designed poison pill box that could now be used as a basis of a new range of natural insecticides.

It had been known that nematode worms can infect and kill insect pests with the help of a bacterium which they harbour inside their intestine.

The bacterium uses a protein (XptA1) a toxin which helps the nematode to kill and feed on the dead body of the insect. The toxin not only kills the target insect but prevents other predators from eating the body giving free reign to the nematode worms to consume it, multiply and move on. However, until now, researchers had little idea of the make up of XptA1 and thus how it worked. The research team, based at the University of Warwick’s horticultural research arm Warwick HRI, have now been able to reveal the shape of the protein XptA1 and discovered a number of properties that make it a particularly efficient natural insecticide and possible alternative to some commercial insecticides that are facing increased resistance in the insect populations they target.

The researchers at Warwick HRI, together with a team of colleagues with expertise in the Structural Biology group in Biological Sciences and in Chemistry at The University of Warwick, as well as Coventry and Nottingham Universities, found that the protein was formed from four sub units in the shape of a hollow cage or box which is configured to bind well to part of a caterpillar’s gut called “Brush Border Membrane Vesicles” (BBMV).

The XptA1 protein seemed to specifically target the BBMV of caterpillars Pieris Brassicae – (The cabbage white butterfly caterpillar which are pests for many growers). The hollow box structure appears to be a key element of the protein’s design. The hollow shape allows the protein to act as a receptacle for two other proteins (in the case of XptA1 these are XptB1 and XptC1). This forms a poison “complex” which makes the XptA1 300 times more toxic to the caterpillars than it would be by itself. As well as helping collect together the three proteins and attach them to the insect’s gut the researchers think that the box shape of the XptA1 protein possibly also helps protect the poison complex from the acid attack they would face from the high pH values in the insect gut. The researchers also discovered that, while XptA1 was highly selective in that it bound to the cabbage white butterfly caterpillar, there were variants of this family of toxic proteins (such as XptA2) that targeted other insects.

Dr Sarah Lee from the University of Warwick said: “This research gives us crucial new insights into a family of naturally occurring proteins that are toxic to a number of insect pests. They offer an alternative to current commercial protein based insect toxins have been in use for 40 years and are now starting to meet some resistance. This potential new family of protein based insecticides would overcome such resistance as they operate in an entirely different way”

The research has been published in the 9th March issue of The Journal of Molecular Biology Volume 366 Issue 5 pages 1558 – 1568. The paper is titled “Structural Characterisation of the Insecticidal Toxin XptA1, Reveals a 1.15 MDa Tetramer with a Cage-like Structure”

Peter Dunn | alfa
Further information:
http://www2.warwick.ac.uk/newsandevents/pressreleases/secret_of_worms/

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>