Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New success in engineering plant oils

06.03.2007
Technique could yield materials to replace petrochemicals and more nutritious edible oils

Using genetic manipulation to modify the activity of a plant enzyme, researchers at the U.S. Department of Energy's Brookhaven National Laboratory have converted an unsaturated oil in the seeds of a temperate plant to the more saturated kind usually found in tropical plants. The research will be published online by the Proceedings of the National Academy of Sciences (PNAS) the week of March 5, 2007.

While conversion of an unsaturated oil to an oil with increased saturated fatty acid levels may not sound like a boon to those conscious about consuming unsaturated fats, "the development of new plant seed oils has several potential biotechnological applications," said Brookhaven biochemist John Shanklin, lead author on the paper.

For one thing, the new tropical-like oil has properties more like margarine than do temperate oils, but without the trans fatty acids commonly found in margarine products. Furthermore, engineered oils could be used to produce feedstocks for industrial processes in place of those currently obtained from petrochemicals. Shanklin also suggests that the genetic manipulation could work in the reverse to allow scientists to engineer more heart-healthy food oils.

"Scientists have known for a long time that the ratio of saturated to unsaturated fatty acids plays a key role in plants' ability to adapt to different climates, but to change this ratio specifically in seed oils without changing the climate is an interesting challenge," remarked Shanklin. "Our group sought to gain a better understanding of the enzymes and metabolic pathways that produce these oils to find ways to manipulate the accumulation of fats using genetic techniques."

The researchers focused on an enzyme known as KASII that normally elongates fatty acid chains by adding two carbon atoms. The longer 18-carbon chains are more likely to be acted on by enzymes that desaturate the fat. So the scientists hypothesized that if they could prevent the chain lengthening by reducing the levels of KASII, they could decrease the likelihood of desaturation and increase the level of saturated fats in the plant seeds.

Their hypothesis was supported by the fact that scientists had previously identified a plant with a mutated KASII that showed reduced enzyme activity, and these plants were able to accumulate more saturated fats than was normal. So the Brookhaven team set out to reduce KASII activity with the use of RNA-interference (RNAi) to see if they could further increase the level of saturation in plant seed oils.

The Brookhaven scientists performed their experiments on Arabidopsis, a plant commonly used in research. Like other plants from temperate climates (e.g., canola, soybean, and sunflower), Arabidopsis contains predominantly 18-carbon unsaturated fatty acids in its seed oil. Tropical plants, in contrast (e.g. palm), contain higher proportions (approximately 50 percent) of 16-carbon saturated fatty acids.

The results were surprising. The genetic manipulations that reduced KASII activity resulted in a seven-fold increase in 16-carbon unsaturated fatty acids — up to an unprecedented 53 percent — in the temperate Arabidopsis plant seed oils.

"These results demonstrate that manipulation of a single enzyme's activity is sufficient to convert the seed oil composition of Arabidopsis from that of a typical temperate pant to that of a tropical palm-like oil," Shanklin said. "It is fascinating — and potentially very useful — to know that we can change the oil composition so drastically by simple specific changes in seed oil metabolism, and that this process can occur independently from the adaptation to either tropical or temperate climates."

For example, such a technique could lead to the engineering of temperate crop plants to produce saturated oils as renewable feedstocks for industrial processes. Such renewable resources could help reduce dependence on petroleum.

Conversely, methods to increase the activity of KASII, and therefore the production of 18-carbon desaturated plant oils, may provide a useful strategy to limit the accumulation of saturated fatty acids in edible oils, leading to more healthful nutrition.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov
http://www.pnas.org/cgi/doi/10.1073/pnas.0611141104
http://www.bnl.gov/newsroom

More articles from Agricultural and Forestry Science:

nachricht Faba fix for corn's nitrogen need
11.04.2018 | American Society of Agronomy

nachricht Wheat research discovery yields genetic secrets that could shape future crops
09.04.2018 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>