Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disease Causing Irish Potato Famine Came From South America

05.03.2007
Scientists at North Carolina State University have discovered that the fungus-like pathogen that caused the 1840s Irish potato famine originally came from the Andes of South America.

By comparing the sequences of both the nuclear and the cellular powerhouse, mitochondria, of nearly 100 pathogen samples from South America, Central America, North America and Europe, Dr. Jean Beagle Ristaino, professor of plant pathology at NC State, and a small team of researchers created “gene genealogies” that point the finger at an Andean point of origin for the pathogen, which is known as Phytophthora infestans.

The research is published online in Proceedings of the National Academy of Sciences.

Like family trees that genealogists use to trace family histories, the scientists used the pathogens’ gene genealogy to track migration patterns of the different strains, or haplotypes, of the pathogen. In essence, Ristaino, former grad student Luis Gomez-Alpizar and Dr. Ignazio Carbone, all of NC State’s Department of Plant Pathology, figured out how the pathogen’s genes changed over time and tracked these changes on maps that look similar to family trees.

“By studying the pathogen’s mutations, or changes in DNA, you can tell where the mutations originated and what strains spread to different parts of the world,” Ristaino says. Most of the early mutations occurred in Peru and Ecuador in South America, according to the researchers’ data.

Ristaino says there are a number of camps on the issue of the pathogen’s center of origin. While 19th century scientists believed P. infestans came from South America, some present-day scientists believe Toluca, Mexico, to be the origination point. Early in the 20th century, Ristaino says, Toluca became a center for plant breeding studies, as scientists there collected potato seed from all over the world and tested it for resistance to the pathogen.

Ristaino says, however, that commercial production of potatoes did not exist in 1840s Mexico. In her more than 10 years of studying the potato pathogen in plants dating back centuries, Ristaino has also delved in shipping records and trade patterns. South American countries – mainly Peru – provided potatoes and potato seed to North American, Central American, European and Irish locales throughout the 19th century. In fact, Ristaino says, dry rot disease stymied potato production some years before the Irish potato famine, and Peru was called upon to provide tubers in response to the disease.

It’s not hard to imagine diseased potatoes or potato seed being shipped from South America to the United States, Bermuda or Halifax, Nova Scotia, and then on to Europe, Ristaino says. “Potatoes were also part of ship stores to feed hungry sailors,” Ristaino says.

Ristaino is no stranger to quashing prevailing theories about P. infestans. She called into question the assumption that the Ib strain of the pathogen – the pathogen has four strains, Ia, Ib, IIa and IIb – caused the Irish potato famine in a paper published in the journal Nature in 2001. Ristaino published findings that pointed the finger at the Ia haplotype in 2004.

P. infestans caused the Irish potato famine, which killed or displaced millions of Irish people, and other late-blight epidemics across the world. It continues to plague modern potato and tomato plants.

Researchers from around the globe have joined forces to understand the pathogen and learn what makes the plant destroyer kill. Ristaino is part of a team that sequenced the entire genome of P. infestans recently at the Broad Institute at Massachusetts Institute of Technology in Cambridge in a collaborative project funded by the USDA and the National Science Foundation. The whole genome sequence data is important since it provides a complete genetic “parts list” for the organism; allows identification of new genes and comparison to other pathogens; allows study of the genomic landscape that clarifies how selection and evolution work; and contributes to our general understanding of water moulds, or Oomycetes, a branch of life extremely different from animals, bacteria and fungi.

Ristaino is now pursuing studies on the evolution of related Phytophthora species in the Andes to determine how they compare to P. infestans. “Many Phytophthora species thrive in the tropics and it’s possible they could be shipped here,” Ristaino says. “More understanding can help us prevent their introduction in the United States.”

The research was funded by the USDA National Research Initiatives Cooperative Grants Program, the National Science Foundation and the Fulbright Scholarship program.

Dr. Jean Ristaino | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Agricultural and Forestry Science:

nachricht Light green plants save nitrogen without sacrificing photosynthetic efficiency
21.11.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>