Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Groundbreaking ceremony for new crop research centre

14.02.2007
The University of Nottingham Malaysia Campus is to collaborate on a new research centre that will focus on oil palm research using the latest molecular techniques.

The University is collaborating with a Malaysian company, Applied Agricultural Resources (AAR), to lead research into genetic improvements that could make the oil palm more resistant to disease, easier to harvest and more valuable to the producer.

Bill Rammell MP, Minister for Lifelong Learning, Further and Higher Education, was at The University of Nottingham’s Malaysia Campus, at Semenyih near Kuala Lumpur, to perform the groundbreaking ceremony at an adjacent site where the AAR Research Centre will be based. Mr Rammell, visiting Semenyih with five Vice-Chancellors of other UK universities, was also briefed by Professor Brian Atkin, Vice-President at the campus, on other developments.

AAR is an internationally-recognised centre for plantation crop research and development. Among the areas that will be explored at the new AAR Research Centre are the use of DNA to detect illegitimate crosses, tissue culture mix-ups and other identity-related issues. DNA finger-printing technology will be utilised to authenticate the in-house breeds and clones for intellectual property rights.

The laboratory will also seek to hasten traditional breeding programmes through genetic relationship studies to determine desirable oil palm breeding partners. In order to speed up the breeding programmes, marker-assisted selection technology will be developed for early selection of wanted and unwanted traits at DNA level, rather than selection after the oil palm starts fruiting and yielding. Traits of interest include oil quality, tree height and fruit colour.

Construction will now start on the new facility, which is expected to open in October 2007. It will be located on a site adjacent to the Malaysia campus.

In the future, scientists envisage that genetic engineering technology could be used to overcome the barrier of introducing new traits into oil palm. This technology, together with marker-assisted selection and tissue culture, could speed up the production of new oil palm varieties with desirable traits — such as high value oil, disease resistance and amenability to mechanised harvesting.

Professor Brian Atkin, Vice-President at the Malaysia Campus, said: “Industry-academic collaboration is an important part of research and as a research-led university, we are pleased to collaborate with AAR.

“The centre will also provide facilities for high level biotechnology research for students from our undergraduate and postgraduate biotechnology programme.”

Dr Soh Aik Chin, Head of Agricultural Research at AAR, said: “The decision to locate the Research Centre at an adjacent lot to the Malaysia Campus is to enable us to leverage on the resources and facilities available at the School of Biosciences at the Malaysia Campus.

“We are pleased to be able to collaborate with an internationally acclaimed centre of excellence for teaching and fundamental research. I would like the AAR Research Centre to emulate Nottingham’s success and look forward to a successful and fruitful collaboration.”

The groundbreaking was performed by Bill Rammell MP. He was in Malaysia with a delegation of five vice-chancellors from UK universities, to sign a Memorandum of Understanding in Education, in collaboration with the Ministry of Higher Education in Malaysia, and to meet policymakers and senior educationalists from both the public and private sectors.

The University of Nottingham Malaysia Campus opened in September 2000 to become the first branch campus of a British university in Malaysia and the first anywhere in the world. The Malaysia Campus is a full and integral part of The University of Nottingham, UK, and students are awarded University of Nottingham degree certificates.

Led by senior academic staff seconded from Nottingham, UK, the Malaysia Campus offers students the Nottingham experience in a local setting and yet is firmly rooted in all that is distinctive about UK education — innovative teaching and assessment methods, which encourage independent, creative thinking.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>