Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic modification a tool for making vegetables and fruit (even) healthier

09.02.2007
It is possible to improve the antioxidant action of tomatoes by a directed change in the production of flavonoids by means of genetic modification.

This has been shown in research by Elio Schijlen at Plant Research Internationa, part of Wageningen University and Research Centre in the Netherlands. Schijlen demonstrated that this approach enables tomatoes to produce larger amounts of specific flavonoids and to let tomatoes produce flavonoids they cannot produce by nature. On the basis of the research Schijlen obtained HIS his PhD-degree on Thursday 8 February at the University of Amsterdam.

The results of this research show that genetic modification is a possible approach to further increase the health promoting value of vegetables and fruit. Flavonoids are frequently occurring and important metabolites in plants. About 6000 different flavonoids are known to be involved in various natural processes. The colour of flowers and ripe fruits, e.g., are often caused by flavonoids. But flavonoids also play an important role in other plant processes such as pollen production, disease resistance, and protection against UV radiation.

Because flavonoids are so frequently occurring in plants, they are a permanent component of our food. Part of the health promoting effects of vegetables and fruit is attributed to flavonoids. It may therefore be attractive to increase the amount of flavonoids and/or change their composition.

This was why Schijlen, working at Plant Research International of Wageningen UR, studied the possibilities of steering the production of flavonoids by a directed change of the biosynthesis route via genetic modification. He followed various approaches to achieve this. One approach was to investigate the possibility of increasing the amount of flavonoids in tomato by means of so-called transcription factors, proteins involved in regulating gene activity.

Schijlen also investigated the possibility to produce new flavonoids in tomatoes which might increase the health promoting properties of tomatoes. For this purpose he used genes form other crops such as grape and alfalfa, genes that are involved in certain steps in the biosynthesis of flavonoids in these crops.

Both approaches were found to be successful. Through genetic modification Schijlen succeeded in developing tomatoes not only with more flavonoids but also with new flavonoids.

Via biochemical analysis Schijlen demonstrated an increased antioxidant action of tomatoes with flavones and more flavonoles, two specific groups of flavonoids. In cooperation with scientists of BASF Plant Science and TNO, the potential health promoting effects of these tomatoes were tested in feeding studies with mice. Blood analyses showed that that the tomatoes with increased flavonoids had a stronger positive effect on blood properties that are characteristic of a reduced risk of cardiovascular disorders.

With his results, Schijlen has shown that genetic modification can further increase the health promoting effects of vegetables and fruit.

Jac Niessen | alfa
Further information:
http://www.wur.nl

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>