Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes involved in coffee quality have been identified

07.02.2007
To maintain their incomes, growers are increasingly banking on producing quality coffee. However, improving coffee beverage quality means knowing more about the biological processes - flowering, fruit ripening, etc - that determine end product characteristics.

Some compounds (sugars, fats, caffeine, etc) are known to play a role in coffee quality. Their accumulation in the plant, and particularly in the beans, is a determining factor. Sucrose is considered to play a crucial role in coffee organoleptic quality, since its breakdown during roasting releases several aroma and flavour precursors.

Since 2001, CIRAD and the Agricultural Institute of Paraná in Brazil (IAPAR) have been working on joint research into how coffee beans ripen. They have characterized the key enzymes in the sucrose metabolism during coffee bean development. The researchers involved used molecular biology and biochemistry techniques in their work, supported by the University of Campinas in Brazil (Unicamp).

Their work showed that an enzyme, sucrose synthetase, is responsible for sucrose accumulation in coffee (Coffea arabica) beans. Unlike in other plants, invertases play only a minor role in this metabolism. Sucrose synthetase exists in the form of at least two similar proteins with the same biological function - isoforms -, but which are coded by two different genes: SUS1 and SUS2.

Expression of those genes was analysed within the various tissues of developing coffee beans (pulp, perisperm and endosperm). The results showed that sucrose accumulation in coffee beans, towards the end of ripening and just before picking, is controlled by isoform SUS2. Isoform SUS1, for its part, seems to be involved in sucrose breakdown and thus in energy production. In effect, its expression is systematically detected during the early stages of cell division and expansion in young tissues.

A second phase comprised a study of the nucleotidic diversity of these genes, so as to account for the variations in bean sucrose content between the various Coffea species or within the same species. The genes were mapped and tested to determine their role in that variability. The aim was to identify early markers of sucrose content that would guarantee end product quality.

The first application of these results was a study of the relations between shading, which is known to improve coffee quality, and sucrose metabolism enzymes. To this end, IAPAR set up a field trial. The results showed that sucrose synthetase and sucrose phosphate synthetase, another enzyme in the sucrose metabolism, show greater enzymatic activity in the beans of coffee trees grown in the shade than in those grown in full sunlight. In the case of sucrose synthetase, this activity is correlated with the increase in SUS2 gene expression seen in the beans of shaded plants. However, the final sucrose content of the beans is not higher for shaded plants. The quality of shaded coffee may thus result from the reorientation of the sugar metabolism towards the synthesis of other compounds, such as fats, which may also be involved.

Helen Burford | alfa
Further information:
http://www.cirad.fr/en/actualite/communique.php?id=610

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>