Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Africa's farmers will have room to grow

Enhanced, drought-tolerant maize will give African farmers options, even with global warming

A vital research program that has already had significant impact on the lives of African farmers will accelerate its work for their benefit, thanks to new funding from one of the world’s most important philanthropic organizations, the Bill & Melinda Gates Foundation.

The research also marks the forging of a strong, new partnership between the developing world’s premier research organizations dedicated to improving the livelihoods of farm families who rely on maize—the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA).

The two centers will team with research partners in eleven of Africa’s most maize-dependent and drought-affected countries.

More than a quarter of a billion Africans depend on maize as their staple food, often eating a quarter kilo or more of maize and maize products every day. Any disruption in the supply of maize, either at the farm level or to the markets, has destructive consequences for the most vulnerable. Unpredictable rainfall, recurring drought, and loss of soil fertility have all made the maize harvests in Africa uncertain. Today, many farm families cannot grow enough food to last the year and do not have income to buy food. Accepting donated food aid is often the only way to survive. This robs families of their dignity and shackles development.

For more than a decade, CIMMYT and IITA, working in cooperation with a wide range of partners in countries throughout sub-Saharan Africa, have been developing solutions, in particular maize that can produce even during drought, for farm families who depend on maize for their food security and livelihoods. Farmers themselves participate in the breeding process, providing land for test plots and screening, and scoring potential new varieties. Thanks to the combined efforts of national agricultural research systems, non-government organizations, and seed companies in several African nations, up to a million hectares are now sown to new, drought-tolerant varieties, giving farmers a 25-30% boost in yield.

But there is much more potential to be realized for farmers in the region, potential that can raise farm families from below subsistence to annual surplus. That will give them the option to sell surpluses to the rapidly growing urban markets or to devote some of their land to other crops, in particular crops which contribute to restoring soil fertility and enhancing incomes. In either case the farmer’s overall risk is lessened and life and livelihoods improved.

"With every year of research that we do now and in the future, we can add to a drought-affected fields another 100 kilograms of maize," says Marianne Bänziger, Director of CIMMYT’s Global Maize Program, "That means more maize for farming families to eat or sell when conditions are toughest."

CIMMYT and IITA will combine their expertise in working with maize farmers in varying agro-ecologies across the continent and will draw from the genetic resources (maize seeds) held in their two substantial germplasm banks to make this research program truly pan-African.

The vision of the new work is to generate maize varieties which are much hardier when drought hits. Doubling the yield of adapted maize varieties under drought is the ambitious goal for the next 10 years and is possible because of the huge, natural, genetic variation in maize and new scientific methods that permit better use of this variation. New varieties of drought tolerant maize will play a significant part in mitigating the potentially disastrous consequences for the crop that could result from global warming.

"The importance of this work to sub-Saharan Africa and its people cannot be overemphasized," says Romano Kiome, Permanent Secretary to the Ministry of Agriculture of Kenya. "It is heartening that the Bill & Melinda Gates Foundation has recognized it and sees the long-term vision of this project as part of their strategy to help Africa’s development."

CIMMYT and IITA will continue to use both participatory breeding strategies and drought-stress screening, combined with the new techniques of marker-assisted selection, to improve the efficiency of breeding. The scientists will also analyze bottlenecks in seed systems and identify high-priority areas for future poverty-reducing investments. Finally, work will greatly expand partnerships with national agricultural research systems, non-government organizations, seed companies, and other development initiatives in the region to ensure positive impacts for resource-poor farmers.

David Mowbray | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>