Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Africa's farmers will have room to grow

30.01.2007
Enhanced, drought-tolerant maize will give African farmers options, even with global warming

A vital research program that has already had significant impact on the lives of African farmers will accelerate its work for their benefit, thanks to new funding from one of the world’s most important philanthropic organizations, the Bill & Melinda Gates Foundation.

The research also marks the forging of a strong, new partnership between the developing world’s premier research organizations dedicated to improving the livelihoods of farm families who rely on maize—the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA).

The two centers will team with research partners in eleven of Africa’s most maize-dependent and drought-affected countries.

More than a quarter of a billion Africans depend on maize as their staple food, often eating a quarter kilo or more of maize and maize products every day. Any disruption in the supply of maize, either at the farm level or to the markets, has destructive consequences for the most vulnerable. Unpredictable rainfall, recurring drought, and loss of soil fertility have all made the maize harvests in Africa uncertain. Today, many farm families cannot grow enough food to last the year and do not have income to buy food. Accepting donated food aid is often the only way to survive. This robs families of their dignity and shackles development.

For more than a decade, CIMMYT and IITA, working in cooperation with a wide range of partners in countries throughout sub-Saharan Africa, have been developing solutions, in particular maize that can produce even during drought, for farm families who depend on maize for their food security and livelihoods. Farmers themselves participate in the breeding process, providing land for test plots and screening, and scoring potential new varieties. Thanks to the combined efforts of national agricultural research systems, non-government organizations, and seed companies in several African nations, up to a million hectares are now sown to new, drought-tolerant varieties, giving farmers a 25-30% boost in yield.

But there is much more potential to be realized for farmers in the region, potential that can raise farm families from below subsistence to annual surplus. That will give them the option to sell surpluses to the rapidly growing urban markets or to devote some of their land to other crops, in particular crops which contribute to restoring soil fertility and enhancing incomes. In either case the farmer’s overall risk is lessened and life and livelihoods improved.

"With every year of research that we do now and in the future, we can add to a drought-affected fields another 100 kilograms of maize," says Marianne Bänziger, Director of CIMMYT’s Global Maize Program, "That means more maize for farming families to eat or sell when conditions are toughest."

CIMMYT and IITA will combine their expertise in working with maize farmers in varying agro-ecologies across the continent and will draw from the genetic resources (maize seeds) held in their two substantial germplasm banks to make this research program truly pan-African.

The vision of the new work is to generate maize varieties which are much hardier when drought hits. Doubling the yield of adapted maize varieties under drought is the ambitious goal for the next 10 years and is possible because of the huge, natural, genetic variation in maize and new scientific methods that permit better use of this variation. New varieties of drought tolerant maize will play a significant part in mitigating the potentially disastrous consequences for the crop that could result from global warming.

"The importance of this work to sub-Saharan Africa and its people cannot be overemphasized," says Romano Kiome, Permanent Secretary to the Ministry of Agriculture of Kenya. "It is heartening that the Bill & Melinda Gates Foundation has recognized it and sees the long-term vision of this project as part of their strategy to help Africa’s development."

CIMMYT and IITA will continue to use both participatory breeding strategies and drought-stress screening, combined with the new techniques of marker-assisted selection, to improve the efficiency of breeding. The scientists will also analyze bottlenecks in seed systems and identify high-priority areas for future poverty-reducing investments. Finally, work will greatly expand partnerships with national agricultural research systems, non-government organizations, seed companies, and other development initiatives in the region to ensure positive impacts for resource-poor farmers.

David Mowbray | EurekAlert!
Further information:
http://www.cgiar.org

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>