Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungal factories may save hemlock forests

29.01.2007
University of Vermont researchers invent whey-based 'microfactory'

Reaching into a box glowing with fluorescent light, Stacie Grassano pulls out a tube. "This is a great one," she says, holding the clear plastic up to her face. Inside, a tree branch is speckled with white fluff. "It's growing really well," she says, handing it to Scott Costa.

Costa brings the branch close to his eye. "Yes," he says, with a boyish grin, "this is a fungus success story."

For some, a fungus success story means nothing is growing at the back of their refrigerator. But for Costa, research assistant professor of plant and soil science at the University of Vermont, and Grassano, his graduate student, the vigorous growth in their laboratory of this fungus, a strain called Lecanicillium mucarium, means a hopeful new chapter in the otherwise bleak tale of the eastern hemlock tree.

From Georgia to Maine, this once-mighty conifer is now succumbing to an exotic pest, hemlock woolly adelgid. First detected in the western US in 1924, the adelgid reached Virginia in the 1950s. An aphid-like insect, the adelgid kills eastern hemlocks within a few years after infestation, feeding on the sap at base of their needles and cutting off their nutrients.

While the adelgid, originally from Japan and China, appears to have no successful predators in North America, some native fungi—like the one Costa and Grassano have growing on branches in their laboratory—kill the pest.

Last December, Costa, Grassano, and two the other researchers, Vladimir Gouli and Jiancai Li, submitted a provisional patent for a new method of cheaply and effectively spreading the fungus, and other similar "biological controls," that might beat back the adelgid without having to use expensive, toxic pesticides. They call their approach a "whey-based fungal micro-factory."

Instead of growing fungi in a conventional factory and then transporting it out to a forest—a costly proposition—their factory will be the forest. Or, more accurately, tiny droplets of sweet whey—a cheap waste product of cheese production, inoculated with the right concentrations of the target fungus—will be their factory. By spraying the whey solution into an infected forest, they believe they can get the adelgid-killing fungi to reproduce in large numbers on its own.

"The sweet whey only costs 32 cents a pound," says Costa, who gets his donated from a New York-based cheese company, and receives support for his research from the USDA and EPA and other funders.

Whey is a far cheaper growing medium than those available in labs for the many fungi now in use as biological controls in agriculture and forestry.

And the whey serves as a nutritional resource, making each droplet a cozy biological factory for a fungal colony, pumping spores out into the forest long after the spraying teams have gone home.

If their laboratory tests continue to go well, the researchers anticipate starting field trials in 2008.

Their approach looks promising for many other applications of biological control for agriculture and forestry—especially in natural settings with economically low-value plants, like natural forests.

"We're not going to eradicate the adelgid," Costa says. "The best-case scenario for an insect-killing fungi is you inoculate the environment and get disease outbreaks to start cycling. The idea is to reduce the pest population to a level that is manageable, allowing some of the trees to make seeds, grow, and survive."

It's a pressing problem: In Shenandoah National Park most of the famous towering hemlocks are now dead. The adelgid has ravaged parts of Kentucky, North Carolina and the Smoky Mountains. Expanding northward, it has moved through Massachusetts into southern Maine and New Hampshire.

The only natural deterrent to the adelgid seems to be a very cold winter. With global warming, their northward spread seems inevitable. Though not officially recorded yet, "it's probably in southern Vermont now at population levels too low to easily detect," say Costa, who anticipates that the adelgid will be into Vermont's Champlain Valley in not too many years.

While the era of cutting hemlock for the tanning industry is over, there continues to be use of the tree for fiber and construction, and commercial forest owners have something to lose with the demise of the hemlock. But far more important, as the hemlocks expire they take an ecosystem down as they fall.

In cool hollows and along shady mountain streams the hemlock has grown for millennia where other trees wouldn't thrive: a quiet giant soaring to over 150 feet. With a range from Alabama along the Appalachians into the Canadian Maritimes, its shaggy crown creates a blueish green haven unmistakable to turkeys and deer (and hunters): a thick understory of duff, deep with shade that accentuates the black furrows of the hemlock's tannin-rich bark.

In winter, chickadees eat the small seed cones of the hemlock and they are only one species of many that depend on the hemlock not just for food but for the architecture of their world. Some warblers only nest in hemlocks and the mountain fish depend on the trees to keep streams cool.

"See all this white growth?" Costa says in his UVM lab, tracing his finger above the soft flat needles. "That's mycelium and likely as not there are spores at the end of each of those." To the untrained eye, the fungus he and Grassano are growing looks much like the pest they hope it will fight. Hiding on the underside of hemlock branches, the pest produces a white woolly tuft that gives it its name. The fungus looks white and woolly too. But the subtle difference may mean life or death for the eastern hemlock.

Joshua Brown | EurekAlert!
Further information:
http://www.uvm.edu

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>