Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


African researchers and growers are banking on sustainable cocoa

Global demand for cocoa is rising steadily. Ghana and Ivory Coast alone account for almost 60% of world output*. However, maintaining African production levels may prove difficult in future, since cocoa is currently grown extensively. As a result, yields fall as the plantations age, for want of fertilizers and as a result of growing parasite pressure.

Once the soils in a given area are degraded, farmers move on to the last remaining forest areas. In the end, for want of accessible forest resources, cocoa production in West and Central Africa is likely to fall. The problem is that with some 4.5 million hectares of cocoa, the sector provides a living for huge numbers of rural inhabitants in Africa, for instance six million people in Ghana.

It is also one of the main sources of foreign currency: in Ivory Coast, cocoa accounts for some 30% of the country's total exports. Unless a viable agronomic alternative can rapidly be transferred to smallholders in order to sedentarize cocoa production, the economic and social situation in these cocoa-growing zones may eventually become critical.

In response to this agronomic and socioeconomic challenge, CIRAD researchers and their partners opted to set up an African research network. The network falls under the aegis of the Cocoa Producers Alliance (COPAL) and the West and Central African Council for Agricultural Research and Development (CORAF/WECARD), and comprises 35 researchers from 32 research and development organizations in the leading five cocoa-producing countries in Africa: Ivory Coast, Ghana, Togo, Nigeria and Cameroon. The structure, which was initiated under a project on competitive and sustainable cocoa in Africa (SCCS) enabled the launch of nine research operations between 2002 and 2006, with the active involvement of numerous producers in the five countries.

The researchers, technicians and growers involved have primarily worked along four lines: improved cropping systems, participative breeding of cultivars either tolerant of or resistant to the diseases that affect cocoa, protection against pests and diseases, and soil fertilization.

Improved methods that cocoa producers can easily take on board

As regards improved cocoa cropping, researchers have drawn up a typology of the different cropping systems and characterized in detail the agroeconomic conditions for growing cocoa and the environmental conditions in the areas concerned. In particular, the idea was to adapt crop management sequences to the socioeconomic conditions in which growers work. The project subsequently enabled the development of methods for rehabilitating unproductive cocoa plantings that were both more effective than the existing methods and easy for producers to adopt: pruning and budding using improved material, redensification, and phytosanitary protection. The results have also highlighted the merits of growing cocoa under shade - in particular, it conserves the biodiversity and climatic plasticity of the cropping system - and of intercropping it with other crops (fruit, market garden or cash crops) to diversify the growers' sources of income.

Resisting devastating diseases is crucial in ensuring sustainable cocoa growing in Africa. Two diseases are of particular concern: black pod rot and cocoa swollen shoot virus (CSSV). To tackle the problem, researchers have opted to work on potentially resistant cultivars. In Togo, they have bred a certain number of hybrids whose tolerance of, if not resistance to, these diseases has yet to be confirmed under field conditions.

Diseases are not the only obstacle. Cocoa trees are also subject to attacks from numerous sucking insects. One, known as a mirid or capsid, attacks the young branches, which then become necrotic, and the pods. There are control methods, but they are too expensive for growers. One solution is to cut the cost of treatment. To this end, the trees have to be treated at just the right stage in the insect's development. This makes treatment more effective and reduces the environmental impact. An early warning system is currently being tested in Cameroon.

The last task is the maintenance and rational restitution of soil fertility. Cocoa growing calls for large quantities of soil minerals, but without fertilizer applications, the soils are exhausted within twenty years or so. In an attempt to manage soil fertility more efficiently, researchers have tested a decision support tool for rational fertilization that can rapidly devise formulas that are suitable from both an economic and an ecological point of view.

* 2005 figures

Helen Burford | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>