Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rinderpest and peste des petits ruminants: a future treatment centring on interfering RNA

22.12.2006
A therapeutic vaccine to treat rinderpest and peste des petits ruminants... a major step forward for the countries faced with these extremely infectious viral diseases, which can wipe out entire herds.

In regions with a large animal production sector, the viruses that cause these diseases - of the genus Morbillivirus - have significant repercussions on the local economy and food security: in Senegal, the economic impact of a peste des petits ruminants focus was estimated in 1996 at 80 000 euros over three months.

Rinderpest affects domestic cattle, buffaloes and yaks, but also sheep, goats and some pig races, along with a whole range of wild species. Despite a sustained blanket preventive vaccination campaign that has almost wiped out the disease on a global level, there are still some persistent infection foci in the Somali ecosystem. And there is no cure. As regards peste des petits ruminants, which affects sheep and goats, it is found in Africa, on the Arabian Peninsula, in the Middle East and in India. The available preventive vaccines are effective, but still have some drawbacks, such as their low heat resistance. There is no therapeutic treatment against this disease either.

Since early 2005, CIRAD has been developing a new control method against these diseases, based on a novel technique derived from molecular genetics. This new approach centres on a natural biological mechanism: "RNA interference", which usually allows multicellular organisms to control the level of expression of some of their genes. The process involves short RNA fragments capable of preventing the reading and translation into proteins of the genetic code carried by DNA: the fragments are known as interfering RNA. They prevent the RNA playing its fundamental role as a messenger of the information contained in the genes with a view to protein production. In effect, so-called interfering RNA links specifically to the target messenger RNA, resulting in the latter's deterioration and consequently inhibiting expression of the corresponding protein.

Interfering RNA inhibits more than 80% of virus replication

CIRAD researchers have recently identified three synthetic interfering RNAs capable of inhibiting more than 80% of peste des petits ruminants and rinderpest virus replication in vitro. They are targeted at the messenger RNA of the nucleoprotein gene of the viruses that cause the diseases, blocking the virus multiplication process. An application was made for a patent on the results concerning these new biological antivirals in December 2005.

The second phase of the research has now begun: in vivo tests of the new generation of antivirals on infected animals. To this end, the plan is to transfer the interfering RNA to infected animals through a viral vector generally used as a vaccine. If this is indeed seen to inhibit virus replication in the diseased animals, this would open the way for the development of therapeutic vaccines against rinderpest and peste des petits ruminants. The work is due to last for five years, and should make it possible to provide farmers with a safe, effective vaccine.

The results look very promising, and open up vast prospects in terms of animal health. They could be of interest for other viruses such as bird flu or African swine fever. For this last disease, using RNA interference as a control method would be a major step forward, as there is not currently any preventive vaccine.

Helen Burford | alfa
Further information:
http://www.cirad.fr/en/actualite/communique.php?id=582

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>