Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fighting a sugarcane pest with silicon applications

07.12.2006
With 20.4 million hectares planted (2005), sugarcane plays a major role in economic terms, on a global level. Moreover, the current demand for biofuels has triggered unprecedented development of the crop, which is used to produce bioethanol. Smallholders account for 30% of global output, in other words 145 million tonnes of sugar in 2005, 76% of it from cane.

However, the plantations are under attack from numerous insects, several of which cause considerable damage. In particular, this applies to lepidopteran borers such as Eldana saccharina (Pyralidae), whose caterpillars bore into sugarcane stalks, causing losses in terms of both sugar and biomass. The economic impact is significant: estimates in Réunion showed that an infestation rate of more than 90% of affected canes (20% of internodes with holes) causes losses of up to 30 tonnes a hectare in susceptible varieties.

Concentrating on slowing the pest’s development

Chemical control against this type of pest is difficult to implement in that the caterpillars and larvae that cause the damage are sheltered inside the stalks. Moreover, biological control, which has been tested in recent years, has failed to give any conclusive results. Research is now centring on identifying the agronomic factors that slow the borer’s development.

A collaboration project between CIRAD and the South African Sugar Research Institute (SASRI) enabled a vast research programme from 2004 to 2006 in South Africa, one of the world’s leading sugarcane producers. The work was based on an agroecological approach combining silicon applications in the field and the water stress that occurs in certain production zones.

The results of the laboratory trials are very convincing: silicon applications significantly reduce the damage caused by the various varieties of borer, with or without water stress. In the case of susceptible varieties and with water stress, damage is kept at very low levels, equivalent to those measured in resistant varieties, with or without water stress. It is now estimated that applying silicon to susceptible varieties prevents the loss of 20 if not 30% of the sugar yield, not counting the biomass losses caused by the plant. On the other hand, silicon applications do not modify stem hardness. Moreover, no impact on sugar quality has yet been observed.

Silicon apparently triggers a barrier effect against the larvae

One suggestion has been made concerning the active role played by silicon in improving the plant’s defence system. AS regards plants subjected to water stress, it may be that a lack of water leads to modifications in silicon concentration and structure within the plant tissues. These modifications apparently reinforce the barrier effect against larva penetration, without affecting tissue hardness. One other possibility is that the plant’s natural defence mechanisms, whether chemical or physiological, may be strengthened. However, those defence mechanisms have yet to be fully elucidated. Experiments are planned, notably with the University of Kwa-Zulu Natal, in South Africa, to study the role of silicon within the plant. The aim is to locate the silicon deposits in the stalk that are involved in the barrier effect and to determine the nature of that barrier.

The results obtained in the laboratory suggest that it should eventually be possible to extend the use of this agrobiological control method to all sugarcane producers. The cane production basins of South Africa are particularly concerned: 60% of the region’s soils are deficient in plant-available silicon, deficiency that is sometimes exacerbated by a lack of water. There are hopes of controlling the borer more effectively in the field by applying calcium silicate, including on susceptible varieties. Field trials are planned for 2007 and 2008, following which development technicians in the regions concerned will be extending the results to producers.

This research was awarded the Kynoch prize for the best contribution to the South African Sugar Technologists' Association (SASTA) congress in Durban (South Africa) in July 2006, for its merits in terms of potential applications.

Helen Burford | alfa
Further information:
http://www.cirad.fr/en/actualite/communique.php?id=577

More articles from Agricultural and Forestry Science:

nachricht Raiding the rape field
23.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Molecular switch will facilitate the development of pioneering electro-optical devices

24.05.2018 | Power and Electrical Engineering

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>