Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fighting a sugarcane pest with silicon applications

07.12.2006
With 20.4 million hectares planted (2005), sugarcane plays a major role in economic terms, on a global level. Moreover, the current demand for biofuels has triggered unprecedented development of the crop, which is used to produce bioethanol. Smallholders account for 30% of global output, in other words 145 million tonnes of sugar in 2005, 76% of it from cane.

However, the plantations are under attack from numerous insects, several of which cause considerable damage. In particular, this applies to lepidopteran borers such as Eldana saccharina (Pyralidae), whose caterpillars bore into sugarcane stalks, causing losses in terms of both sugar and biomass. The economic impact is significant: estimates in Réunion showed that an infestation rate of more than 90% of affected canes (20% of internodes with holes) causes losses of up to 30 tonnes a hectare in susceptible varieties.

Concentrating on slowing the pest’s development

Chemical control against this type of pest is difficult to implement in that the caterpillars and larvae that cause the damage are sheltered inside the stalks. Moreover, biological control, which has been tested in recent years, has failed to give any conclusive results. Research is now centring on identifying the agronomic factors that slow the borer’s development.

A collaboration project between CIRAD and the South African Sugar Research Institute (SASRI) enabled a vast research programme from 2004 to 2006 in South Africa, one of the world’s leading sugarcane producers. The work was based on an agroecological approach combining silicon applications in the field and the water stress that occurs in certain production zones.

The results of the laboratory trials are very convincing: silicon applications significantly reduce the damage caused by the various varieties of borer, with or without water stress. In the case of susceptible varieties and with water stress, damage is kept at very low levels, equivalent to those measured in resistant varieties, with or without water stress. It is now estimated that applying silicon to susceptible varieties prevents the loss of 20 if not 30% of the sugar yield, not counting the biomass losses caused by the plant. On the other hand, silicon applications do not modify stem hardness. Moreover, no impact on sugar quality has yet been observed.

Silicon apparently triggers a barrier effect against the larvae

One suggestion has been made concerning the active role played by silicon in improving the plant’s defence system. AS regards plants subjected to water stress, it may be that a lack of water leads to modifications in silicon concentration and structure within the plant tissues. These modifications apparently reinforce the barrier effect against larva penetration, without affecting tissue hardness. One other possibility is that the plant’s natural defence mechanisms, whether chemical or physiological, may be strengthened. However, those defence mechanisms have yet to be fully elucidated. Experiments are planned, notably with the University of Kwa-Zulu Natal, in South Africa, to study the role of silicon within the plant. The aim is to locate the silicon deposits in the stalk that are involved in the barrier effect and to determine the nature of that barrier.

The results obtained in the laboratory suggest that it should eventually be possible to extend the use of this agrobiological control method to all sugarcane producers. The cane production basins of South Africa are particularly concerned: 60% of the region’s soils are deficient in plant-available silicon, deficiency that is sometimes exacerbated by a lack of water. There are hopes of controlling the borer more effectively in the field by applying calcium silicate, including on susceptible varieties. Field trials are planned for 2007 and 2008, following which development technicians in the regions concerned will be extending the results to producers.

This research was awarded the Kynoch prize for the best contribution to the South African Sugar Technologists' Association (SASTA) congress in Durban (South Africa) in July 2006, for its merits in terms of potential applications.

Helen Burford | alfa
Further information:
http://www.cirad.fr/en/actualite/communique.php?id=577

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>