Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fighting a sugarcane pest with silicon applications

07.12.2006
With 20.4 million hectares planted (2005), sugarcane plays a major role in economic terms, on a global level. Moreover, the current demand for biofuels has triggered unprecedented development of the crop, which is used to produce bioethanol. Smallholders account for 30% of global output, in other words 145 million tonnes of sugar in 2005, 76% of it from cane.

However, the plantations are under attack from numerous insects, several of which cause considerable damage. In particular, this applies to lepidopteran borers such as Eldana saccharina (Pyralidae), whose caterpillars bore into sugarcane stalks, causing losses in terms of both sugar and biomass. The economic impact is significant: estimates in Réunion showed that an infestation rate of more than 90% of affected canes (20% of internodes with holes) causes losses of up to 30 tonnes a hectare in susceptible varieties.

Concentrating on slowing the pest’s development

Chemical control against this type of pest is difficult to implement in that the caterpillars and larvae that cause the damage are sheltered inside the stalks. Moreover, biological control, which has been tested in recent years, has failed to give any conclusive results. Research is now centring on identifying the agronomic factors that slow the borer’s development.

A collaboration project between CIRAD and the South African Sugar Research Institute (SASRI) enabled a vast research programme from 2004 to 2006 in South Africa, one of the world’s leading sugarcane producers. The work was based on an agroecological approach combining silicon applications in the field and the water stress that occurs in certain production zones.

The results of the laboratory trials are very convincing: silicon applications significantly reduce the damage caused by the various varieties of borer, with or without water stress. In the case of susceptible varieties and with water stress, damage is kept at very low levels, equivalent to those measured in resistant varieties, with or without water stress. It is now estimated that applying silicon to susceptible varieties prevents the loss of 20 if not 30% of the sugar yield, not counting the biomass losses caused by the plant. On the other hand, silicon applications do not modify stem hardness. Moreover, no impact on sugar quality has yet been observed.

Silicon apparently triggers a barrier effect against the larvae

One suggestion has been made concerning the active role played by silicon in improving the plant’s defence system. AS regards plants subjected to water stress, it may be that a lack of water leads to modifications in silicon concentration and structure within the plant tissues. These modifications apparently reinforce the barrier effect against larva penetration, without affecting tissue hardness. One other possibility is that the plant’s natural defence mechanisms, whether chemical or physiological, may be strengthened. However, those defence mechanisms have yet to be fully elucidated. Experiments are planned, notably with the University of Kwa-Zulu Natal, in South Africa, to study the role of silicon within the plant. The aim is to locate the silicon deposits in the stalk that are involved in the barrier effect and to determine the nature of that barrier.

The results obtained in the laboratory suggest that it should eventually be possible to extend the use of this agrobiological control method to all sugarcane producers. The cane production basins of South Africa are particularly concerned: 60% of the region’s soils are deficient in plant-available silicon, deficiency that is sometimes exacerbated by a lack of water. There are hopes of controlling the borer more effectively in the field by applying calcium silicate, including on susceptible varieties. Field trials are planned for 2007 and 2008, following which development technicians in the regions concerned will be extending the results to producers.

This research was awarded the Kynoch prize for the best contribution to the South African Sugar Technologists' Association (SASTA) congress in Durban (South Africa) in July 2006, for its merits in terms of potential applications.

Helen Burford | alfa
Further information:
http://www.cirad.fr/en/actualite/communique.php?id=577

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>