Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perennial wheat research looks at options for producers

30.11.2006
BUSHLAND û Perennial wheat? The possibility is being looked at by a Texas Agricultural Experiment Station researcher.

Annual wheat, which is traditionally grown in the Great Plains, is planted in the fall and dies after harvest in mid-summer. But Dr. Charlie Rush, Experiment Station plant pathologist, is testing some perennial lines of wheat bred in Washington state.

These perennial lines regrow after harvest and may survive for up to five years, Rush said. And eastern Washington is climatically similar to the Texas Panhandle, except it has harsher winters.

"This wheat, if it works here, will start growing back as soon it rains or is irrigated after harvest," he said. "Right now, we don't know if it will work in our area or not. But there definitely could be some applications for it if it does."

The perennial wheat could be used as a ground cover for highly erodible lands, wildlife habitat and an alternative crop for Conservation Reserve Program lands, Rush said. However, primarily he is interested in evaluating use of perennial wheats in dual purpose grain-grazing cropping systems that are prevalent in the southwestern Great Plains.

Over the years, different breeders have crossed bread wheat with wild wheat grass in order to acquire a variety of desirable traits, such as drought tolerance and resistance to diseases and insects, Rush said. In making these crosses, some of the resulting lines inherited the perennial trait.

Perennial wheat programs are already underway in Kansas and Washington. But it was work on disease resistance by Dr. Tim Murray, professor and chair of the plant pathology department, and Dr. Stephen Jones, wheat breeder, both at Washington State University, that first gained Rush's interest.

"For perennial wheats to have a place in our dual-purpose cropping systems, they must have good resistance to disease and insects," Rush said.

For this reason, his primary concern is determining how the 20 experimental lines will hold up against wheat streak mosaic and greenbugs, something both Jones and Murray also are researching.

In addition to screening for disease and insect resistance, Rush is also evaluating the perennial wheat lines for forage quality and yield, water use efficiency and drought tolerance.

"If they have drought tolerance and natural resistance to diseases and insects, it opens up real possibilities," he said. "Producers could save the cost of replanting at the very least. But it could also allow cattle to graze later in the spring and earlier in the fall, and still allow farmers to harvest for grain."

Also, Rush said, producers would be able to avoid the fallow period that sets fields up for erosion. If the perennial wheat is rained on or irrigated in July, it is possible that cattle might be able to start grazing as early as August.

"Since perennial wheats typically yield only 70 percent of the best bread wheat cultivars, I don't see this as competition for the grain crop, but primarily as another option on forage," he said.

Lower yields are the primary reason researchers have not been very interested in perennial wheats, Rush said. But with increasing energy costs and environmental concerns, perennial wheats are worth a new look, especially for the dual-purpose systems.

In September, Rush planted three replications of 20 lines of perennial wheat in September, plus seven non-perennial varieties already in commercial production in the High Plains for comparison. Additionally, he bordered the plots on one side with a variety highly susceptible to wheat streak mosaic virus and on the other side with a highly resistant variety.

"One of the things that could quickly kill this project is if all the perennials are highly susceptible to wheat streak mosaic," he said. "We don't want to have that bridge for the virus and mites to over-summer and threaten the fall wheat crop.

"However, we are confident that some of the lines will be disease-tolerant, because some of Dr. Murray's preliminary findings on resistance to wheat streak in Washington state," Rush said.

Additional testing for insect and disease resistance will be conducted in the greenhouse with the perennial lines being inoculated with wheat streak mosaic virus and tested for resistance to greenbug and possibly bird cherry oat aphids, which also vector barley yellow dwarf virus, he said.

All the insect screening will be conducted by Dr. Jerry Michels, Experiment Station entomologist at Bushland.

"Because this whole research is so brand new, we're limited in the number of treatments we can do until there's more of this perennial wheat seed available," Rush said.

Disease screening and forage quality sampling using remote imaging techniques to measure the biomass, instead of clipping it, has already started and "we're getting good data," Rush said.

In the first sampling, some of the perennial wheat lines yielded roughly the same amount of forage as the bread wheats and also exhibited good resistance to wheat streak, he said.

"I can hardly wait until our next field day to show our regional wheat producers these new wheat lines," Rush said.

Dr. Charlie Rush | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>