Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perennial wheat research looks at options for producers

30.11.2006
BUSHLAND û Perennial wheat? The possibility is being looked at by a Texas Agricultural Experiment Station researcher.

Annual wheat, which is traditionally grown in the Great Plains, is planted in the fall and dies after harvest in mid-summer. But Dr. Charlie Rush, Experiment Station plant pathologist, is testing some perennial lines of wheat bred in Washington state.

These perennial lines regrow after harvest and may survive for up to five years, Rush said. And eastern Washington is climatically similar to the Texas Panhandle, except it has harsher winters.

"This wheat, if it works here, will start growing back as soon it rains or is irrigated after harvest," he said. "Right now, we don't know if it will work in our area or not. But there definitely could be some applications for it if it does."

The perennial wheat could be used as a ground cover for highly erodible lands, wildlife habitat and an alternative crop for Conservation Reserve Program lands, Rush said. However, primarily he is interested in evaluating use of perennial wheats in dual purpose grain-grazing cropping systems that are prevalent in the southwestern Great Plains.

Over the years, different breeders have crossed bread wheat with wild wheat grass in order to acquire a variety of desirable traits, such as drought tolerance and resistance to diseases and insects, Rush said. In making these crosses, some of the resulting lines inherited the perennial trait.

Perennial wheat programs are already underway in Kansas and Washington. But it was work on disease resistance by Dr. Tim Murray, professor and chair of the plant pathology department, and Dr. Stephen Jones, wheat breeder, both at Washington State University, that first gained Rush's interest.

"For perennial wheats to have a place in our dual-purpose cropping systems, they must have good resistance to disease and insects," Rush said.

For this reason, his primary concern is determining how the 20 experimental lines will hold up against wheat streak mosaic and greenbugs, something both Jones and Murray also are researching.

In addition to screening for disease and insect resistance, Rush is also evaluating the perennial wheat lines for forage quality and yield, water use efficiency and drought tolerance.

"If they have drought tolerance and natural resistance to diseases and insects, it opens up real possibilities," he said. "Producers could save the cost of replanting at the very least. But it could also allow cattle to graze later in the spring and earlier in the fall, and still allow farmers to harvest for grain."

Also, Rush said, producers would be able to avoid the fallow period that sets fields up for erosion. If the perennial wheat is rained on or irrigated in July, it is possible that cattle might be able to start grazing as early as August.

"Since perennial wheats typically yield only 70 percent of the best bread wheat cultivars, I don't see this as competition for the grain crop, but primarily as another option on forage," he said.

Lower yields are the primary reason researchers have not been very interested in perennial wheats, Rush said. But with increasing energy costs and environmental concerns, perennial wheats are worth a new look, especially for the dual-purpose systems.

In September, Rush planted three replications of 20 lines of perennial wheat in September, plus seven non-perennial varieties already in commercial production in the High Plains for comparison. Additionally, he bordered the plots on one side with a variety highly susceptible to wheat streak mosaic virus and on the other side with a highly resistant variety.

"One of the things that could quickly kill this project is if all the perennials are highly susceptible to wheat streak mosaic," he said. "We don't want to have that bridge for the virus and mites to over-summer and threaten the fall wheat crop.

"However, we are confident that some of the lines will be disease-tolerant, because some of Dr. Murray's preliminary findings on resistance to wheat streak in Washington state," Rush said.

Additional testing for insect and disease resistance will be conducted in the greenhouse with the perennial lines being inoculated with wheat streak mosaic virus and tested for resistance to greenbug and possibly bird cherry oat aphids, which also vector barley yellow dwarf virus, he said.

All the insect screening will be conducted by Dr. Jerry Michels, Experiment Station entomologist at Bushland.

"Because this whole research is so brand new, we're limited in the number of treatments we can do until there's more of this perennial wheat seed available," Rush said.

Disease screening and forage quality sampling using remote imaging techniques to measure the biomass, instead of clipping it, has already started and "we're getting good data," Rush said.

In the first sampling, some of the perennial wheat lines yielded roughly the same amount of forage as the bread wheats and also exhibited good resistance to wheat streak, he said.

"I can hardly wait until our next field day to show our regional wheat producers these new wheat lines," Rush said.

Dr. Charlie Rush | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>