Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dairy Drugstore

17.11.2006
Specialists of the All-Russian State Research Institute of Cattle Breeding have obtained transgenic animals, which give milk with the proteins participating in haemopoiesis. However, these are not ordinary transgenic animals, but somatic ones: the transgene is present not in every cell of the body, but only in the organ where it should work – in the udder.

The researchers started the effort for creation of somatic transgenic animals several years ago (InformNauka described these investigations in the material entitled “Transgenic Cows and Pigs” in 2002). Since then, they have obtained transgenic goats and specified influence of various factors on protein produce.

Utilization of transgenic agricultural animals as fermenters bodes well for pharmaceutical industry. However, the traditional method of getting them (when the DNA is introduced directly into the impregnated ovule) is inefficient. Only 1 percent of transplanted embryos turn out to be transgenic, and only 60 percent of transgenic animals provide at lease some amount of the required protein. Moreover, it would be clear who will give protein and how much of it several years after the DNA introduction when the transgenic ovule would turn into an animal of a proper age. Fortunately, there is a less lengthy and expensive way of gene transfer – the required gene is introduced directly into the mammary gland of a cow, goat or a sow.

Of course, the method is rather troublesome. First, the required gene should be built into the retrovirus’ genome, and the viral DNA should be introduced into the cell culture. Retroviruses possess a property very precious to genetic engineering – to survive in the cell, they must necessarily build their DNA into the cell’s chromosome.

The cells are reproducing and along with that they are producing new viral particles, and when they are introduced into the mammary gland, the viral particles penetrate the gland’s cells and build their DNA in the cellular genome. Thus, the mammary gland’s cells get the required gene and start producing the useful protein together with milk.

The researchers dealt with genes of two proteins participating in maturation of blood cells: erythropoietin and granulocyte-colony-stimulating factor. The maximum concentrations of these proteins in milk reached about 1,000 and 200 nanogram per milliliter, respectively. However, contemporary technologies allow to educe proteins from milk at ten times lower concentrations (only 25 nanogram per milliliter).

Practically all laboratory animals synthesized the required proteins during the entire period of lactation. However, the quantity of protein in milk changes from day to day. The first third of lactation is more productive than the two following ones. The researchers have determined that the highest possible production of proteins requires that gene constructions should be introduced into the mammary gland of cows in the 4th –6th month of pregnancy, that of goats – in the 4th –5th month of pregnancy, and that of sows – during the last trimester of pregnancy. The maximum production of proteins was achieved with cows, but the average concentration of proteins turned out to be higher in the milk of goats and sows.

In the researchers’ opinion, they have developed a technology, which allows to get the highest quantity of industrially important protein from the milk of an animal as compared to other existing gene transfer methods. Although transgenic animals, obtained by this method, do not transmit the new gene to descendants, they efficiently produce biologically active proteins in required quantities.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>