Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Developing uses for sugar-cane bagasse: biotechnology applied to the paper industry

14.11.2006
Sugar-cane bagasse is a fibrous waste-product of the sugar refining industry, along with ethanol vapour. Part of the great volume of this waste produced is recycled as a raw material for paper manufacture, but the industrial processing required for delignification and bleaching of the resulting paper pulp can be damaging for the environment.

Seeking to overcome these drawbacks, IRD researchers (UMR 180) and INRA (UMR 1163) (1), working jointly within IFR-BAIM (Biotechnologies Agro-Industrielles de Marseille), have elaborated a new bioprocess that transforms the bagasse into paper pulp and also produces an industrially useful enzyme, laccase. The process is based on the metabolism of a filamentous fungus which, when raised in culture on bagasse in the presence of ethanol, produces this enzyme.

Laccase breaks down the lignin in the cane waste, changing the latter into paper pulp. Preliminary laboratory trials show that this integrated bioprocess can be adapted to other potential fibre-yielding materials, opening up promising applications for the paper industry.

The principal raw material used for manufacturing paper pulp is wood. However, growing demand in the paper industry, at a time of dwindling forest resources, have compelled the sector to turn to other sources of raw materials, such as cereal straw, reeds, bamboo or sugar-cane bagasse. This residue, obtained after crushing of the cane, is already used as a source of paper-making fibres in producer countries (in South America and India for example, where it represents 20 % of the paper production). The industry absorbs 10% of the world bagasse production. This material offers several advantages: rapid growth of the sugar-cane plant, widespread cultivation, lower energy and bleaching chemical requirements for bagasse refining. Such a process is also a convenient means of usefully clearing this voluminous sugar refinery waste product: indeed, one tonne of refined sugar results in two tonnes of bagasse.

However, whatever the raw material used, paper pulp has to undergo processing stages of delignification and bleaching to turn it into high-strength and durable paper. In some countries the chemical processing involved still entail the use of chlorine, dangerous for both health and the environment (2).

Research scientists from the IRD and INRA studied an alternative, biologically based, solution. Laboratory experimentation enabled them to develop a non-polluting process, which at the same time yields a delignifying enzyme, laccase, from a culture of a filamentous fungus and effectively recycles the sugar-cane bagasse. Its principle lies in the specific metabolic characteristics of this fungus, Pycnoporus cinnabarinus, which produces laccase naturally. This enzyme breaks down the lignin in the fibres of bagasse used as substrate in these trials, transforming this waste product, after mechanical refining, into paper pulp. As the lignin progressively disappears, the pulp obtained becomes bleached. This pulp can be used as it is to make cardboard, but it must undergo additional treatment using hydrogen peroxide in order to yield paper for printed and writing.

P. cinnabarinus naturally sythesizes only small amounts of laccase when it grows on bagasse. It is necessary to add volatile agents such as ethanol, in order to increase production of the enzyme under these conditions (3). Ethanol was chosen as a laccase-inducer in this study because of its abundance, its low toxicity and low production cost. The research team moreover showed that if it was put into the system by forced convection at a rate of 7 g of ethanol per m3 (concentration equivalent to 3° of alcohol in the liquid phase), laccase production increased, to a maximum level (90 U per g of dry bagasse support). This amounts to 45 times the yield obtained without ethanol. Moreover, it appeared that little or no ethanol introduced was consumed by the fungus which preferentially uses other sources of carbon, resulting from the bagasse (saccharose) or put in with the substrate (maltose, yeast extracts and so on). It can therefore be recycled in the system or eliminated in a second system associated with it (4).

Replication of the fermentation trials at a larger scale, in an 18 litre bioreactor, confirmed the efficiency of the laccase production obtained using bagasse and ethanol (90 000 U per kg of dry bagasse after 30 days, representing the quantity needed for processing, without input of fungus, an extra 4 kg of bagasse). This bioprocess resulted in a 50% saving in energy consumption required for paper pulp refining, compared with that recorded for refining pulp from bagasse that had not been biologically treated. Another benefit came in the form of a 35% improvement in the paper’s mechanical characteristics (tensile strength and tear resistance) without appreciable loss of material.

The results as a whole emphasize the potential for applications of this bioprocess in the paper industry. Retrieval of the laccase at the end of the cycle, after washing and pressing of the bagasse, allows additional quantities of the substrate to be processed and, in this way, raise the profitability of the operation. Furthermore, this process can be adapted to the processing of other raw materials (wood, cereals). Investigation of the use of methanol as laccase inducer can, similarly, be envisaged as a way of recycling this compound, which constitutes one of the main pollutants emitted by the paper industry.

(1) Each of these teams is a partner of the Universities of Provence and the Mediterranean . They are grouped together within the research entity IFR 86-BAIM.

(2) In Europe, however, the paper industry is turning increasingly towards completely chlorine-free processes.

(3) Lomascolo et al.- Overproduction of laccase by a monokarryotic strain of Pycnoporus cinnabarinus, using ethanol as inducer, J. Appl. Microbiol. 2003, 94, p. 1-7.

Other research conducted by the IRD, working jointly with the UAM (Autonomous University of Mexico) of Mexico City and the ICIDEA (Cuban Institute of Research on Sugar-cane derivatives) of Cuba, have shown that a yeast, Candida utilis, can be used to produce biomass on the bagasse. It can thus provide a protein-rich feed for animals, while eliminating ethanol in the process (air pollution removal). See the scientific bulletin n°155, May 2002, on line on www.ird.fr/fr/actualites/fiches/2002/fiche155.htm.

Marie Guillaume | alfa
Further information:
http://www.ird.fr/fr/actualites/fiches/2006/fas252.pdf

More articles from Agricultural and Forestry Science:

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>