Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Many weather factors needed for accurate climate change predictions

08.11.2006
Current climate change impact models that consider only one weather variable, such as increasing temperature, sometimes spawn unsubstantiated doomsday predictions, according to researchers at Purdue and North Carolina universities.

Climate change studies that assess the full range of interactions among temperature, radiation, precipitation and land use can better aid humans to prepare for extreme shifts in weather patterns, the scientists report in a special issue of the journal Global and Planetary Change.

Climate change impact models often don't consider whether shifting weather will allow for sustainable agriculture, said Dev Niyogi, corresponding author of the journal article and Purdue agronomy, and earth and atmospheric sciences assistant professor.

Niyogi's team looked at weather factor interactions and their impact on two different crop plants by using data for weather and field conditions that occurred in a year considered normal for the test area. By designing a study that changed a number of variables simultaneously, the researchers found that the complex interactions of precipitation with other weather factors had the most impact on the overall health of crops and regional agricultural productivity. They concluded that lack of precipitation will have the most dramatic effect on living conditions in the future.

"Even though the question often posed involves the impact of global warming on agriculture, the real question ought to be 'What is the effect of drought?'" said Niyogi, who also is Indiana state climatologist.

Plants that are stressed due to lack of water threaten the future and sustainability of agricultural crops. Complicating the climate impact on crops is that growing demand for agricultural products also can affect weather patterns, Niyogi said.

"One basic issue we still need to understand is that population growth is a major driver for climate change," he said. "When we have more humans, we'll use more energy and use more landmass."

Land-use shifts can impact temperature and overall climate, as already evident in urban temperatures compared with rural temperatures, Niyogi said. This is a result of weather variable interactions and can be demonstrated in Niyogi's research, which involves interaction of radiation, temperature and precipitation changes.

"When temperature rises, you see more evaporation," Niyogi said. "More evaporation could lead to more clouds. More clouds might lead to changes in radiation. Changes in radiation can impact the amount of convection — the heating of the environment by the rising air. This leads to formation of rain, which can change the soil moisture and temperature again."

Niyogi and his collaborators tried to reproduce how temperature, radiation and precipitation interact and how those interactions impact two types of crops: corn and soybeans. The scientists used data from an area in North Carolina in which they had conducted previous studies. The data were from 1998, when the weather was considered normal for the area.

Niyogi's team ran 25 different climate scenarios on each of the crops in order to assess the effect of various interactions of radiation, temperature and precipitation on corn and soybeans.

The scientists found that radiation could be beneficial in a medium range because it increases the plants' photosynthesis, the process by which plants take energy from the sun to spur growth. However, too much radiation or too little radiation both lowered crop yield because they changed the efficiency of photosynthesis.

Radiation also affected how much water evaporated from the plants. This changed plants' water usage and had an impact on crop yield.

While temperature changes had a more direct effect on crops than did radiation, the researchers found that the impact was dependent on when temperature changes occurred and how long they lasted.

More refined studies need to be done on individual regions of the world to develop resource management and drought plans, according to Niyogi and his research team.

"Right now, we would be in shock if we had a real drought in Indiana," Niyogi said. "We can avoid a drought disaster depending on how we manage our resources based on climate change impacts that consider multiple interactions and vulnerability."

As the population increases, demand for agriculture products increases and regional climates change, management of resources will become even more important.

"As the region and the world brace for the necessity of higher crop yields, the role of weather becomes more critical and needs to be taken into account seriously in developing agronomic plans," Niyogi said.

The other researchers involved with this study were lead author Roberto Mera, a graduate student in Niyogi's lab; and North Carolina State University researchers Fredrick Semazzi, professor of marine, earth and atmospheric sciences and mathematics; Gregory Buol, crop science research scientist; and Gail Wilkerson, professor of crop sciences.

NASA, the National Science Foundation and the U.S. Department of Agriculture provided funding for this research.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu
Source: Dev Niyogi, (765) 494-6574, dniyogi@purdue.edu
Ag Communications: (765) 494-2722;
Beth Forbes, forbes@purdue.edu
Agriculture News Page

Susan A. Steeves | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>