Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Many weather factors needed for accurate climate change predictions

08.11.2006
Current climate change impact models that consider only one weather variable, such as increasing temperature, sometimes spawn unsubstantiated doomsday predictions, according to researchers at Purdue and North Carolina universities.

Climate change studies that assess the full range of interactions among temperature, radiation, precipitation and land use can better aid humans to prepare for extreme shifts in weather patterns, the scientists report in a special issue of the journal Global and Planetary Change.

Climate change impact models often don't consider whether shifting weather will allow for sustainable agriculture, said Dev Niyogi, corresponding author of the journal article and Purdue agronomy, and earth and atmospheric sciences assistant professor.

Niyogi's team looked at weather factor interactions and their impact on two different crop plants by using data for weather and field conditions that occurred in a year considered normal for the test area. By designing a study that changed a number of variables simultaneously, the researchers found that the complex interactions of precipitation with other weather factors had the most impact on the overall health of crops and regional agricultural productivity. They concluded that lack of precipitation will have the most dramatic effect on living conditions in the future.

"Even though the question often posed involves the impact of global warming on agriculture, the real question ought to be 'What is the effect of drought?'" said Niyogi, who also is Indiana state climatologist.

Plants that are stressed due to lack of water threaten the future and sustainability of agricultural crops. Complicating the climate impact on crops is that growing demand for agricultural products also can affect weather patterns, Niyogi said.

"One basic issue we still need to understand is that population growth is a major driver for climate change," he said. "When we have more humans, we'll use more energy and use more landmass."

Land-use shifts can impact temperature and overall climate, as already evident in urban temperatures compared with rural temperatures, Niyogi said. This is a result of weather variable interactions and can be demonstrated in Niyogi's research, which involves interaction of radiation, temperature and precipitation changes.

"When temperature rises, you see more evaporation," Niyogi said. "More evaporation could lead to more clouds. More clouds might lead to changes in radiation. Changes in radiation can impact the amount of convection — the heating of the environment by the rising air. This leads to formation of rain, which can change the soil moisture and temperature again."

Niyogi and his collaborators tried to reproduce how temperature, radiation and precipitation interact and how those interactions impact two types of crops: corn and soybeans. The scientists used data from an area in North Carolina in which they had conducted previous studies. The data were from 1998, when the weather was considered normal for the area.

Niyogi's team ran 25 different climate scenarios on each of the crops in order to assess the effect of various interactions of radiation, temperature and precipitation on corn and soybeans.

The scientists found that radiation could be beneficial in a medium range because it increases the plants' photosynthesis, the process by which plants take energy from the sun to spur growth. However, too much radiation or too little radiation both lowered crop yield because they changed the efficiency of photosynthesis.

Radiation also affected how much water evaporated from the plants. This changed plants' water usage and had an impact on crop yield.

While temperature changes had a more direct effect on crops than did radiation, the researchers found that the impact was dependent on when temperature changes occurred and how long they lasted.

More refined studies need to be done on individual regions of the world to develop resource management and drought plans, according to Niyogi and his research team.

"Right now, we would be in shock if we had a real drought in Indiana," Niyogi said. "We can avoid a drought disaster depending on how we manage our resources based on climate change impacts that consider multiple interactions and vulnerability."

As the population increases, demand for agriculture products increases and regional climates change, management of resources will become even more important.

"As the region and the world brace for the necessity of higher crop yields, the role of weather becomes more critical and needs to be taken into account seriously in developing agronomic plans," Niyogi said.

The other researchers involved with this study were lead author Roberto Mera, a graduate student in Niyogi's lab; and North Carolina State University researchers Fredrick Semazzi, professor of marine, earth and atmospheric sciences and mathematics; Gregory Buol, crop science research scientist; and Gail Wilkerson, professor of crop sciences.

NASA, the National Science Foundation and the U.S. Department of Agriculture provided funding for this research.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu
Source: Dev Niyogi, (765) 494-6574, dniyogi@purdue.edu
Ag Communications: (765) 494-2722;
Beth Forbes, forbes@purdue.edu
Agriculture News Page

Susan A. Steeves | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>