Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning unwanted straw into valuable products for industry

24.01.2002


Common or garden straw could be a rich source of raw materials for a range of industries, from the health foods and cosmetics sectors to packaging and fabrics.


Researchers at the University of Wales, Bangor are developing environmentally friendly ways of processing wheat and other cereal straws to extract valuable products for industry.

The work is being carried out through the Government’s LINK scheme, with funding from the Swindon based Engineering and Physical Sciences Research Council, the Government’s department for rural affairs and several industrial partners.

“Some 10 million tonnes of wheat straw is produced annually in the UK, for which there is a market for about 20 per cent,” says Dr Jeremy Tomkinson, who is leading the research. “In the past the unwanted straw was burned, but since that was outlawed it is now generally chopped up by the harvesting machine and ploughed back into the land.” While some types of soil can assimilate the straw easily in this way, heavier, clay-based soils do not rot it down so well, raising doubts about the long-term sustainability of the practice.



However, The Bangor researchers believe that straw could become a source of chemical feedstock for industry.

Broadly there are four main components of straw; the waxy outer layer, cellulose, hemicellulose and lignin.
  • The purified wax has potential as a base for cosmetics such as lipsticks and contains substances called phytosterols, which are currently used in cholesterol-reducing spreads.
  • Cellulose is used to manufacture viscose, which in turn is converted to cellophane and rayon.
  • Hemicellulose – can produce polymers of many different sizes for use in a range of industrial applications e.g. paints and coatings.
  • Lignin has some small, specialised applications but its high calorific value could make it suitable to be burned in combined heat and power plants.

“The key to abstracting maximum value from the straw is to remove the various products sequentially whilst leaving the remaining ones intact,” says Dr Tomkinson.

“The emphasis is on environmentally benign processes that are as straightforward as possible,” says Dr Tomkinson. “If there is too much rocket science involved business people will not be interested because it is too risky. But you do have to design the process carefully so that you obtain the products you want. We are working closely with our industrial partners so that at every stage we know what industry requires and we can tailor the processes to meet those demands.”

Jane Reck | alphagalileo

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>