Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning unwanted straw into valuable products for industry

24.01.2002


Common or garden straw could be a rich source of raw materials for a range of industries, from the health foods and cosmetics sectors to packaging and fabrics.


Researchers at the University of Wales, Bangor are developing environmentally friendly ways of processing wheat and other cereal straws to extract valuable products for industry.

The work is being carried out through the Government’s LINK scheme, with funding from the Swindon based Engineering and Physical Sciences Research Council, the Government’s department for rural affairs and several industrial partners.

“Some 10 million tonnes of wheat straw is produced annually in the UK, for which there is a market for about 20 per cent,” says Dr Jeremy Tomkinson, who is leading the research. “In the past the unwanted straw was burned, but since that was outlawed it is now generally chopped up by the harvesting machine and ploughed back into the land.” While some types of soil can assimilate the straw easily in this way, heavier, clay-based soils do not rot it down so well, raising doubts about the long-term sustainability of the practice.



However, The Bangor researchers believe that straw could become a source of chemical feedstock for industry.

Broadly there are four main components of straw; the waxy outer layer, cellulose, hemicellulose and lignin.
  • The purified wax has potential as a base for cosmetics such as lipsticks and contains substances called phytosterols, which are currently used in cholesterol-reducing spreads.
  • Cellulose is used to manufacture viscose, which in turn is converted to cellophane and rayon.
  • Hemicellulose – can produce polymers of many different sizes for use in a range of industrial applications e.g. paints and coatings.
  • Lignin has some small, specialised applications but its high calorific value could make it suitable to be burned in combined heat and power plants.

“The key to abstracting maximum value from the straw is to remove the various products sequentially whilst leaving the remaining ones intact,” says Dr Tomkinson.

“The emphasis is on environmentally benign processes that are as straightforward as possible,” says Dr Tomkinson. “If there is too much rocket science involved business people will not be interested because it is too risky. But you do have to design the process carefully so that you obtain the products you want. We are working closely with our industrial partners so that at every stage we know what industry requires and we can tailor the processes to meet those demands.”

Jane Reck | alphagalileo

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>