Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Turning unwanted straw into valuable products for industry


Common or garden straw could be a rich source of raw materials for a range of industries, from the health foods and cosmetics sectors to packaging and fabrics.

Researchers at the University of Wales, Bangor are developing environmentally friendly ways of processing wheat and other cereal straws to extract valuable products for industry.

The work is being carried out through the Government’s LINK scheme, with funding from the Swindon based Engineering and Physical Sciences Research Council, the Government’s department for rural affairs and several industrial partners.

“Some 10 million tonnes of wheat straw is produced annually in the UK, for which there is a market for about 20 per cent,” says Dr Jeremy Tomkinson, who is leading the research. “In the past the unwanted straw was burned, but since that was outlawed it is now generally chopped up by the harvesting machine and ploughed back into the land.” While some types of soil can assimilate the straw easily in this way, heavier, clay-based soils do not rot it down so well, raising doubts about the long-term sustainability of the practice.

However, The Bangor researchers believe that straw could become a source of chemical feedstock for industry.

Broadly there are four main components of straw; the waxy outer layer, cellulose, hemicellulose and lignin.
  • The purified wax has potential as a base for cosmetics such as lipsticks and contains substances called phytosterols, which are currently used in cholesterol-reducing spreads.
  • Cellulose is used to manufacture viscose, which in turn is converted to cellophane and rayon.
  • Hemicellulose – can produce polymers of many different sizes for use in a range of industrial applications e.g. paints and coatings.
  • Lignin has some small, specialised applications but its high calorific value could make it suitable to be burned in combined heat and power plants.

“The key to abstracting maximum value from the straw is to remove the various products sequentially whilst leaving the remaining ones intact,” says Dr Tomkinson.

“The emphasis is on environmentally benign processes that are as straightforward as possible,” says Dr Tomkinson. “If there is too much rocket science involved business people will not be interested because it is too risky. But you do have to design the process carefully so that you obtain the products you want. We are working closely with our industrial partners so that at every stage we know what industry requires and we can tailor the processes to meet those demands.”

Jane Reck | alphagalileo

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>