Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Composting may be alternative in wake of horse slaughter bill

13.10.2006
The American Horse Slaughter Prevention Act, making its way from the U.S. House to the Senate, could leave thousands of horses with no final resting ground.

Composting may be an environmentally friendly option that fits in the "circle of life" frame of mind and may be less emotional, two area researchers said.

On Sept. 7 the House approved the Act, which bans the slaughter of horses for human consumption by a vote of 263-146. The Senate has yet to schedule the issue for consideration.

Approximately 90,000 horses, or 1 percent of the U.S. horse population, is slaughtered annually, said Dr. Lance Baker, West Texas A&M University associate professor of animal science.

"If they don't go to slaughter, they will have to go somewhere else," Baker said.

The options for dealing with a carcass are burial, rendering, landfill disposal, incineration, composting or bio-digesting, he said. Many of these are costly, and a horse owner often has to pay to put the horse down and for its disposal, instead of getting money for the animal.

Large-carcass composting is a growing and accepted practice among feedyards and dairies, said Dr. Brent Auvermann, a Texas Agricultural Experiment Station agricultural engineer who has researched the process for about five years.

"Since we had already done some work with dairy cattle, which weigh about 1,400 pounds, a quarter horse at 1,000 pounds wasn't much different," Auvermann said. "The main thing is: the larger the carcass, the higher the stakes. It is critical that whoever does it, does it right."

Auvermann, Baker and West Texas A&M graduate student Laurie Brown began conducting a composting trial on horses last winter, using dead horses that would otherwise have gone to the landfill. The horses were provided by area veterinarians .

The trial tested three different "recipes" of composting material designed by Auvermann: 100 percent stall cleanout (horse manure and bedding); 50 percent cattle manure and 50 percent waste hay; and 50 percent stall cleanout and 50 percent cattle manure. He said he prefers the two mixes to the 100 percent stall cleanout.

Large animal composting works best if pre-composting of the material has already been started before the carcass is added, Auvermann said. The carcass is laid on a bed of chopped hay and then covered completely with the composting material.

From that point, moisture is a key, Auvermann and Baker said. Auvermann said it would be better to err on the side of too dry than too wet.

"Add water until a handful of the mixture squeezed hard doesn't result in droplets of water, but does leave a sheen of water on the glove," he said.

A good indication the composting process is working correctly is temperature, Auvermann said. The temperature should start rising within 12 to 24 hours and reach a level between 131 degrees Fahrenheit and 155 degrees Fahrenheit and stay in that range for several weeks to a month.

The temperature should be taken with at least a 48-inch temperature probe and taken in several locations throughout the pile, he said.

In the studies, the pile was turned at three months, at which time Baker said only a few large bones were identifiable. By six months, nothing was identifiable.

The optimum time to wait before making the first turn with larger animals is five to six months, Auvermann said. A large carcass will take from seven to nine months to compost completely, at which point it can be used as a fertilizer on agricultural ground.

The phosphorous level will be about 20 to 25 pounds per dry ton. It will have some nitrogen, but might contain less than 20 pounds per dry ton or, if the recipe is right, up to 35 pounds per dry ton, he said.

"This is well suited to cotton in terms of the nitrogen-phosphorous ratio," Auvermann said, adding cotton gin trash would be an excellent ingredient to put into the composting mix.

The compost must go through three phases before it is a valuable product, he said. The final phase, curing, is important because it lets the last intermediate compounds be converted to non-phytotoxic compounds.

"Maturity testing is a good idea," Auvermann said. "When you put compost on plants, if it is not mature, it may compete with the plants for nitrogen. It also can kill the plant if it is too hot with phytotoxic compounds."

He suggested trying a small amount with potting soil in a seeding tray to see if the seed would germinate and grow, or using a maturity test kit.

Auvermann said several other options for the composted material would be to be used as a Class A biosolid for roadways and to help establish turf grass, or it could be used in the bioenergy arena. The material could be gasified and burned after it is composted.

Both Auvermann and Baker said the small individual horse owner might not see composting as an option, but a large, centrally located commercial composting operation would offer a service to area horse owners and veterinarians.

"Without renderers to go to, this could become a big market," Baker said. "If you look at it environmentally and politically, it works. It's the whole circle of life thing. You grow the grass to feed the animals and then turn around and use them to do the same thing for the next generation."

Dr. Brent Auvermann | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>