Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patchwork strategies may be best for restoring Texas rangelands

13.10.2006
A patchwork quilt approach may best suit landowners trying to repair many years of overgrazing, continuous stocking and fire suppression on Texas rangelands, said a Texas Agricultural Experiment Station researcher.

Dr. Bill Pinchak, Experiment Station range animal nutritionist, and his colleagues, Dr. Jim Ansley, Dr. Dean Ransom and Dr. Richard Teague will explain the patch disturbance for rangeland restoration management plan at the Range and Wildlife Field Day on Oct. 5.

"Managing the Rangeland Resources of the Texas Rolling Plains" will begin with registration at 8 a.m. at Texas Foundation Seed, adjacent to the Texas A&M University System Agricultural Research and Extension Center near Vernon.

Texas rangelands have steadily declined in productivity, biodiversity and watershed function due to "chronic" disturbances, Pinchak said. These continuous disturbances are the primary reason for woody plant encroachment, ecological degradation and loss of plant diversity.

"Rangeland restoration has traditionally been based on chemical, mechanical and/or fire techniques applied to an entire pasture at infrequent intervals," he said. "These large-scale disturbances have generally created landscapes favorable to livestock management, but not necessarily favoring wildlife, watersheds or ecosystem function."

Now, Pinchak said, increasing interest in ecotourism, land tenure changes and smaller ranch properties have led to different of what is good rangeland condition.

The Rangeland Innovations for Sustainable Environments team is a group of scientists from the Vernon, Uvalde and San Angelo Research and Extension Centers who are studying the feasibility of re-introducing frequent, small-scale (patch) disturbances.

In addition to Pinchak, Ansley, Teague and Ransom, team members are Dr. Keith Owens, Uvalde; Dr. Butch Taylor, Sonora; Dr. Susan Cooper, Uvalde; and Dr. Dale Rollins, San Angelo.

For the past three years, patch disturbances of fire or mechanical brush control on continuously grazed pastures has been used to alter livestock grazing patterns, Pinchak said.

These changes are anticipated to facilitate aid biodiversity and production, and decrease the effects of woody plants on Texas rangelands under continuous grazing, he said.

Funding for this research initiative is provided by the U.S. Department of Agriculture Joe Skeen Institute for Rangeland Restoration.

Research is being conducted across a 400-mile north to south gradient of Texas rangelands from Vernon to Barnhart and Uvalde, he said. Fire or roller-chopping is applied to 10 percent of each pasture to determine the soil, plant and wildlife responses.

The studies create a mosaic of patch disturbance histories that will alter the timing, duration and intensity of livestock and wildlife use across the entire pasture, Pinchak said.

"The analogy is one of a patchwork quilt, where each color patch in the quilt represents a different understory (grasses) and overstory (trees/shrubs) plant structure based on the type of patch disturbance used, time since disturbance and intensity of livestock and wildlife use on the resultant patch," he said.

The patches represent: areas recently treated and heavily grazed; those treated and grazed heavily one to seven years ago; areas grazed less than in the past; and areas grazed more than in the past, he said.

Collectively, the patch disturbances increase the diversity of plants and improve the spatial distribution of grazing by livestock and wildlife, Pinchak said.

The scientists believe this technique will lead to improved rangeland condition, because of the natural tendency for livestock and wildlife to use recently disturbed areas, he said. This should decrease use on undisturbed and older disturbed areas and promote more rapid rates of vegetation change.

"We have seen the animals do prefer and utilize more the disturbed sites, although with the drought, the responses have been slow," Pinchak said.

The practice of disturbing only 10 percent of any one pasture also benefits the producer who doesn't have another place to go with the cattle, he said.

"If a pasture was burned in entirety, it requires pre-burn and post-burn removal of the cattle," Pinchak said. "With the patch disturbance approach, it allows them to manage woody plants and improve range conditions without having to change their grazing management program."

Dr. Bill Pinchak | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>