Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Of I robots go solar; new system could drastically reduce herbicide use

12.10.2006
A solar-powered robot with 20/20 vision, on a search-and-destroy quest for weeds, will soon be moving up and down the crop rows at the experimental fields at the University of Illinois. What's more, this robot has the potential to control weeds while significantly reducing herbicide use.

The robot uses GPS for navigation, and there are two small cameras mounted on a frame on top of the machine to give the robot depth perception, just like a human, said Lei Tian, agricultural engineer at the U of I. "If he sees a weed, he can actually tell how far away it is."

An on-board computer offers access to information that provides the morphological features of plants, to help the robot determine just what is and isn't a weed. Once a weed is identified, a robotic arm attached to the front of the machine engages a device the researcher calls "a custom-designed end effector."

There are two layers to the device, according to Tian. One layer cuts the weed, while the second layer applies herbicide to the cut weed.

"This type of application is extremely effective," said Tian, "because it applies herbicide directly to the plant, instead of broadcasting uniform rates across a field."

With this level of precision, Tian says the system has clear environmental benefits. In addition to cutting herbicide use, chemicals do not drift off-target when placed directly on the plants.

The original inspiration for this robot came several years ago, when Tian and two graduate students were working on remote sensing systems for a CFAR (Council on Food and Agricultural Research) project.

"We were collecting field data from satellite imagery, such as soil moisture and plant conditions, but we needed to have ground reference data to validate that information," said Tian.

"But that kind of data is tedious to collect," he continued, "and it's very hot work. The grad students who collected this information stayed in the field most of the day, and one of them was fainting from the heat."

At the time, Tian was working on a robot that could go into the field and continuously collect data, but the battery that powered the system required charging about every two hours.

"So I thought, what if we had a system that could collect data, but could also convert the heat of the sun into an energy source?" said Tian. "We could replace the grad student worker with this robotic system."

That system evolved into today's model, and two different grad students worked with Tian to present a paper on the robot at the Annual International Meeting of Agricultural and Biological Engineers this July in Portland, Oregon.

Hong Young Jeon, a PhD candidate in agricultural and biological engineering, and Nathanael Gingrich, a master's student, have worked steadily on the system design that cuts the weed and applies herbicide. They have also mounted the curved solar panel that powers the robot.

"We custom-built a shelf that holds the solar panel," said Gingrich. "It also protects the machine from weather and gives it shade for its vision system."

Although the robot is equipped with ultrasonic sensors that go all the way around the machine, "we're going to try and use only the camera vision for navigation," said Jeon, "which makes it a lot more difficult."

The robot stands a little more than two feet tall, is 28 inches wide and almost five feet long. He can travel about three miles per hour and moves on wheels, although the researchers have treads they can put on him as well, to give him more grip.

At the current stage, the robot is used to combat weed infestation, but in the future, Gingrich and Jeon hope to place different sensors and cameras on the robotic arm that would be used to judge soil properties or plant conditions.

"It has a full-blown Windows computer with an 80-gigabyte hard drive and a wireless connection to the Internet," said Gingrich, "so the amount of information we can collect is virtually unlimited."

Leanne Lucas | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>