Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vegetables, Like People, Urged to Live Up to Potential

10.10.2006
Carrots may be underachievers. Healthy and good for one's eyes, yes, but they could be so much more, researchers say.

A major stress in a carrot's life – like the slash of a kitchen knife – and the tapered tuber kicks in the juice and pumps up its phytochemicals.

That's the finding of Dr. Luis Cisneros, Texas Agricultural Experiment Station food scientist. He calls it abiotic stress – pushing the button, so to speak, on a crop after it has been harvested.

"What happens is that on many occasions, plants do not express their real potential. They can actually express more if they are challenged to a point," he said.

"It's something similar to what would happen with people. You stress people, and people tend to respond more to the challenges in front of them," he added. "In this case, when you stress plants, you actually trigger this genetic response, and the plant will synthesize chemical compounds. You end up with a carrot that is healthier than the original carrot in a short period of time with a very cheap and easy stressor."

A key to his research was understanding the plant's pathway to a specific, desired compound and getting it to increase only that one. So far, his lab has successfully increased the amount of antioxidant activity in carrots up to five times.

The finding is important for food processors, Cisneros said, because as companies increasingly seek ways to add healthier components to foods, the technique could yield more of those desired substances.

One kilogram of anthocyanin extract is valued at $1,000 in the marketplace, Cisneros said. Anthocyanin is the red pigment in vegetables which is associated with a reduced risk of cancer and heart disease.

"So, if you stress (carrots) and they accumulate more anthocyanin, that means more money," he said. "Now imagine using that carrot to make a juice or making an extract of it that could be added to bread or some other product. You end up with an array of different products that you can benefit from."

Growers also stand to gain, he said. In traditional vegetable marketing, the only way for a producer to make more money is to harvest higher yields.

"But with this process, a grower could market not for the yield in tonnage, but for the percent of phytochemicals," he explained.

Other current research on producing phytochemicals in foods focuses on breeding fruits and vegetables to have increased amounts of the compounds, Cisneros noted. While that is beneficial, the ability to quadruple the phytochemical with a simple, post-harvest technique would add even more value.

In his lab, the "wounded," or cut, carrots were placed under an ultraviolet light for a few seconds. Analysis a couple of days after that simple treatment showed a "huge increase" in antioxidants, he said.

"Abiotic stress has been known for decades," he said. "But our work is new because we targeted something specific to accumulate what we wanted. We used stress to manipulate."

The finding opens the door for more research, he said.

"We are trying to see if these responses can be duplicated in other types of plants – different types of fruits and vegetables," he said. "We want to see the signal molecule that is promoting these types of responses to maybe improve the way we are applying these stresses."

Kathleen Phillips | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>