Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vegetables, Like People, Urged to Live Up to Potential

10.10.2006
Carrots may be underachievers. Healthy and good for one's eyes, yes, but they could be so much more, researchers say.

A major stress in a carrot's life – like the slash of a kitchen knife – and the tapered tuber kicks in the juice and pumps up its phytochemicals.

That's the finding of Dr. Luis Cisneros, Texas Agricultural Experiment Station food scientist. He calls it abiotic stress – pushing the button, so to speak, on a crop after it has been harvested.

"What happens is that on many occasions, plants do not express their real potential. They can actually express more if they are challenged to a point," he said.

"It's something similar to what would happen with people. You stress people, and people tend to respond more to the challenges in front of them," he added. "In this case, when you stress plants, you actually trigger this genetic response, and the plant will synthesize chemical compounds. You end up with a carrot that is healthier than the original carrot in a short period of time with a very cheap and easy stressor."

A key to his research was understanding the plant's pathway to a specific, desired compound and getting it to increase only that one. So far, his lab has successfully increased the amount of antioxidant activity in carrots up to five times.

The finding is important for food processors, Cisneros said, because as companies increasingly seek ways to add healthier components to foods, the technique could yield more of those desired substances.

One kilogram of anthocyanin extract is valued at $1,000 in the marketplace, Cisneros said. Anthocyanin is the red pigment in vegetables which is associated with a reduced risk of cancer and heart disease.

"So, if you stress (carrots) and they accumulate more anthocyanin, that means more money," he said. "Now imagine using that carrot to make a juice or making an extract of it that could be added to bread or some other product. You end up with an array of different products that you can benefit from."

Growers also stand to gain, he said. In traditional vegetable marketing, the only way for a producer to make more money is to harvest higher yields.

"But with this process, a grower could market not for the yield in tonnage, but for the percent of phytochemicals," he explained.

Other current research on producing phytochemicals in foods focuses on breeding fruits and vegetables to have increased amounts of the compounds, Cisneros noted. While that is beneficial, the ability to quadruple the phytochemical with a simple, post-harvest technique would add even more value.

In his lab, the "wounded," or cut, carrots were placed under an ultraviolet light for a few seconds. Analysis a couple of days after that simple treatment showed a "huge increase" in antioxidants, he said.

"Abiotic stress has been known for decades," he said. "But our work is new because we targeted something specific to accumulate what we wanted. We used stress to manipulate."

The finding opens the door for more research, he said.

"We are trying to see if these responses can be duplicated in other types of plants – different types of fruits and vegetables," he said. "We want to see the signal molecule that is promoting these types of responses to maybe improve the way we are applying these stresses."

Kathleen Phillips | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>