Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study suggests earlier crop plantings could curb future yields

06.10.2006
In an ongoing bid to grow more corn, farmers in the U.S. Corn Belt are planting seeds much earlier today than they did 30 years ago, a new study has found.

Poring over three decades of agricultural records, Christopher Kucharik, an associate scientist at the University of Wisconsin-Madison, discovered that farmers in 12 U.S. states now put corn in the ground around two weeks earlier than they did during the late 1970s. His findings appear in the current issue of the Agronomy Journal.

Earlier plantings-which mean longer growing seasons--have likely contributed to the increasing corn yields of recent decades. But Kucharik, a terrestrial ecologist at the UW-Madison's Center for Sustainability and the Global Environment, warns the trend can only continue for so long.

"Earlier plantings really can't continue forever because ultimately, farmers will have to contend with wintertime conditions and frozen soils," says Kucharik. "Several decades from now we might see an unexpected drop in annual yield increases when this trend plateaus, which could then increase the threat to our food supply."

The Corn Belt is a major agricultural region of the U.S. Midwest, where corn is a dominant crop. Centered in Iowa and Illinois, the belt extends into Wisconsin, Michigan, Minnesota, South Dakota, Nebraska, Kansas, Missouri, Indiana, Ohio and Kentucky.

Kucharik had initially set out to explore the wider influence of climate change on agricultural yields. But as he began to work with census data maintained by the U.S. Department of Agriculture, he accidentally noticed that over the decades, farmers have been planting most of their corn crops earlier and earlier in the year.

At first, he speculated that the pattern was simply a result of earlier springtime temperatures brought on by global warming. But on probing the last 30 years of the climate record, Kucharik found little proof that warmer weather motivated the early plantings.

"There is very weak or little to no correlation with springtime temperatures over the majority of the Corn Belt and these [earlier] planting dates," Kucharik says. Rather, other factors- - such as improved land management practices and advances in biotechnology - have been far more instrumental in the decision to sow seeds earlier from year to year.

Farmers now have access to new types of seeds, for instance, that are engineered so that plants are more resistant to the colder soils of early spring. Another technologically enhanced corn seed comes with a polymer coating that only switches "on" when the soil reaches temperatures suitable for seed germination. As technology has continued to revolutionize agricultural methods, farmers have been increasingly confident to put seeds in the ground as soon as they possibly can.

But Kucharik says they should be careful, because nature's seasonal clock can only be manipulated so much. "If you start to shift a plant's development too early, it may start to get out of synch with the seasonal climate it is accustomed to," he says.

While earlier corn plantings have helped crops grow more plentiful over the years, Kucharik hopes the agricultural community will take note of the continuing trend so that future crop yields don't suddenly fall under the mark.

Christopher Kucharik | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>