Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study suggests earlier crop plantings could curb future yields

06.10.2006
In an ongoing bid to grow more corn, farmers in the U.S. Corn Belt are planting seeds much earlier today than they did 30 years ago, a new study has found.

Poring over three decades of agricultural records, Christopher Kucharik, an associate scientist at the University of Wisconsin-Madison, discovered that farmers in 12 U.S. states now put corn in the ground around two weeks earlier than they did during the late 1970s. His findings appear in the current issue of the Agronomy Journal.

Earlier plantings-which mean longer growing seasons--have likely contributed to the increasing corn yields of recent decades. But Kucharik, a terrestrial ecologist at the UW-Madison's Center for Sustainability and the Global Environment, warns the trend can only continue for so long.

"Earlier plantings really can't continue forever because ultimately, farmers will have to contend with wintertime conditions and frozen soils," says Kucharik. "Several decades from now we might see an unexpected drop in annual yield increases when this trend plateaus, which could then increase the threat to our food supply."

The Corn Belt is a major agricultural region of the U.S. Midwest, where corn is a dominant crop. Centered in Iowa and Illinois, the belt extends into Wisconsin, Michigan, Minnesota, South Dakota, Nebraska, Kansas, Missouri, Indiana, Ohio and Kentucky.

Kucharik had initially set out to explore the wider influence of climate change on agricultural yields. But as he began to work with census data maintained by the U.S. Department of Agriculture, he accidentally noticed that over the decades, farmers have been planting most of their corn crops earlier and earlier in the year.

At first, he speculated that the pattern was simply a result of earlier springtime temperatures brought on by global warming. But on probing the last 30 years of the climate record, Kucharik found little proof that warmer weather motivated the early plantings.

"There is very weak or little to no correlation with springtime temperatures over the majority of the Corn Belt and these [earlier] planting dates," Kucharik says. Rather, other factors- - such as improved land management practices and advances in biotechnology - have been far more instrumental in the decision to sow seeds earlier from year to year.

Farmers now have access to new types of seeds, for instance, that are engineered so that plants are more resistant to the colder soils of early spring. Another technologically enhanced corn seed comes with a polymer coating that only switches "on" when the soil reaches temperatures suitable for seed germination. As technology has continued to revolutionize agricultural methods, farmers have been increasingly confident to put seeds in the ground as soon as they possibly can.

But Kucharik says they should be careful, because nature's seasonal clock can only be manipulated so much. "If you start to shift a plant's development too early, it may start to get out of synch with the seasonal climate it is accustomed to," he says.

While earlier corn plantings have helped crops grow more plentiful over the years, Kucharik hopes the agricultural community will take note of the continuing trend so that future crop yields don't suddenly fall under the mark.

Christopher Kucharik | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>