Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of the first resistance gene to rice yellow mottle virus.

19.09.2006
Rice yellow mottle virus (RYMV) was first identified in 1966 in Kenya. It has since been reported in most African countries where rice is grown. The disease is characterized by the appearance of mottling and then tissue death on the leaves. The fertility and development of seeds are affected, which causes considerable yield losses at harvest.

Transmission of RYMV occurs by way of insect vectors or by straightforward contact between plants. Prevention measures, like direct sowing or the burying of straw, have been implemented in order to limit the spread of the disease, but the real potential for reducing the impact of RYMV is to be found in the use of resistant varieties.


Variété de riz sensible au RYMV ou virus de la panachure jaune.

In certain rare traditional varieties of the Asian species of rice, Oryza sativa, and of the African variety, O. glaberrima, RYMV infection does not generally produce leaf symptoms, or have any impact on the harvest production. However, these varieties do not have the agronomic characteristics sought after for intensive irrigated cultivation or growing on low-lying land, where the disease provokes most damage. IRD geneticists have for several years been applying their research to the genetic bases of this resistance in order to facilitate its transfer to varieties that are agronomically useful yet susceptible to the virus with a view to optimizing their use.

Standard genetic studies first found evidence that resistance was controlled by a single recessive gene. Subsequent genetic mapping identified a fragment of chromosome 4 containing the resistance gene. Data from rice genome sequencing have been extremely useful for research on this fragment to find out if one gene rather than another could confer resistance to RYMV. Data from the literature indicates that gene eIF(iso)4G, involved in cellular RNA translation and named Rymv1, appeared to be the best candidate. Validation of the function of this resistance gene was performed by genetic transformation. For this, a line of resistant rice was modified by transgenically introducing the allele for susceptibility of this gene. The descendents of transformed plants that manifested restored susceptibility always showed the presence of the transgene.

Viruses are built with a small genome coding for a limited number of proteins (5 in the RYMVs). They therefore need their host’s proteins in order to accomplish each stage of their infection cycle. One of the proteins that the RYMV requires appears to be the eIF(iso)4G translation initiation factor coded by the Rymv1 gene which is probably involved in viral protein translation, but also perhaps in other processes such as the virus’s movement within the cell.

The research team discovered mutations of the gene they analysed in three different resistant varieties. These are distinct but are situated in the same domain of the gene in a patch on the surface favourable for interaction with the virus. In these varieties, the mutation does not appear to alter the protein’s role in its primary biological functions, but can prevent its interaction with the virus which is then blocked in one of the stages of its infectious cycle.

In parallel, a team of IRD virologists showed that it was possible to carry out laboratory selection of RYMV strains that break the gene’s resistance and that the process involved was determined by mutations in one of the viral proteins. The two approaches are now being combined in order to determine the molecular mechanisms of resistance or susceptibility on the basis of direct interactions between the rice protein and that of the virus. Understanding of these mechanisms will give clues as to the best ways of making long-term use of this resistance gene.

Another strategy developed by the IRD for combating this virus involves introducing part of the viral genes into the plant genome by transgenesis, as has been done in other plant/virus interactions, with the aim of inducing resistance to RYMV. The results show that the transgenic plants have only partial resistance, and for only a short time, and can even end up with a heightened susceptibility. In the particular case of the rice/RYMV interaction, the strategy of introducing a viral gene by transgenic techniques does not bring any advantages compared with the use of natural resistance.

This research can find applications in ways of improving rice production in countries hit by RYMV. Already, the IRD has transferred the gene Rymv1, by crossing, into some agronomically important varieties. The corresponding lineages have been given to various national (Ivory Coast, Senegal, Madagascar) and international research institutions such as the African Rice Centre (Warda, Benin) for them to use in variety selection programmes.

Aude Sonneville
Translation : Nicholas Flay
Glossaire :
(1) Messenger RNA: a ribonucleic acid transcribed from the DNA of a gene and which serves as a model for translation of a protein.

(2) Allele: each of the different possible forms of the same gene.

Marie Guillaume | alfa
Further information:
http://www.ird.fr
http://www.ird.fr/fr/actualites/fiches/2006/fas247.pdf

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>