Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of the first resistance gene to rice yellow mottle virus.

19.09.2006
Rice yellow mottle virus (RYMV) was first identified in 1966 in Kenya. It has since been reported in most African countries where rice is grown. The disease is characterized by the appearance of mottling and then tissue death on the leaves. The fertility and development of seeds are affected, which causes considerable yield losses at harvest.

Transmission of RYMV occurs by way of insect vectors or by straightforward contact between plants. Prevention measures, like direct sowing or the burying of straw, have been implemented in order to limit the spread of the disease, but the real potential for reducing the impact of RYMV is to be found in the use of resistant varieties.


Variété de riz sensible au RYMV ou virus de la panachure jaune.

In certain rare traditional varieties of the Asian species of rice, Oryza sativa, and of the African variety, O. glaberrima, RYMV infection does not generally produce leaf symptoms, or have any impact on the harvest production. However, these varieties do not have the agronomic characteristics sought after for intensive irrigated cultivation or growing on low-lying land, where the disease provokes most damage. IRD geneticists have for several years been applying their research to the genetic bases of this resistance in order to facilitate its transfer to varieties that are agronomically useful yet susceptible to the virus with a view to optimizing their use.

Standard genetic studies first found evidence that resistance was controlled by a single recessive gene. Subsequent genetic mapping identified a fragment of chromosome 4 containing the resistance gene. Data from rice genome sequencing have been extremely useful for research on this fragment to find out if one gene rather than another could confer resistance to RYMV. Data from the literature indicates that gene eIF(iso)4G, involved in cellular RNA translation and named Rymv1, appeared to be the best candidate. Validation of the function of this resistance gene was performed by genetic transformation. For this, a line of resistant rice was modified by transgenically introducing the allele for susceptibility of this gene. The descendents of transformed plants that manifested restored susceptibility always showed the presence of the transgene.

Viruses are built with a small genome coding for a limited number of proteins (5 in the RYMVs). They therefore need their host’s proteins in order to accomplish each stage of their infection cycle. One of the proteins that the RYMV requires appears to be the eIF(iso)4G translation initiation factor coded by the Rymv1 gene which is probably involved in viral protein translation, but also perhaps in other processes such as the virus’s movement within the cell.

The research team discovered mutations of the gene they analysed in three different resistant varieties. These are distinct but are situated in the same domain of the gene in a patch on the surface favourable for interaction with the virus. In these varieties, the mutation does not appear to alter the protein’s role in its primary biological functions, but can prevent its interaction with the virus which is then blocked in one of the stages of its infectious cycle.

In parallel, a team of IRD virologists showed that it was possible to carry out laboratory selection of RYMV strains that break the gene’s resistance and that the process involved was determined by mutations in one of the viral proteins. The two approaches are now being combined in order to determine the molecular mechanisms of resistance or susceptibility on the basis of direct interactions between the rice protein and that of the virus. Understanding of these mechanisms will give clues as to the best ways of making long-term use of this resistance gene.

Another strategy developed by the IRD for combating this virus involves introducing part of the viral genes into the plant genome by transgenesis, as has been done in other plant/virus interactions, with the aim of inducing resistance to RYMV. The results show that the transgenic plants have only partial resistance, and for only a short time, and can even end up with a heightened susceptibility. In the particular case of the rice/RYMV interaction, the strategy of introducing a viral gene by transgenic techniques does not bring any advantages compared with the use of natural resistance.

This research can find applications in ways of improving rice production in countries hit by RYMV. Already, the IRD has transferred the gene Rymv1, by crossing, into some agronomically important varieties. The corresponding lineages have been given to various national (Ivory Coast, Senegal, Madagascar) and international research institutions such as the African Rice Centre (Warda, Benin) for them to use in variety selection programmes.

Aude Sonneville
Translation : Nicholas Flay
Glossaire :
(1) Messenger RNA: a ribonucleic acid transcribed from the DNA of a gene and which serves as a model for translation of a protein.

(2) Allele: each of the different possible forms of the same gene.

Marie Guillaume | alfa
Further information:
http://www.ird.fr
http://www.ird.fr/fr/actualites/fiches/2006/fas247.pdf

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>