Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of the first resistance gene to rice yellow mottle virus.

19.09.2006
Rice yellow mottle virus (RYMV) was first identified in 1966 in Kenya. It has since been reported in most African countries where rice is grown. The disease is characterized by the appearance of mottling and then tissue death on the leaves. The fertility and development of seeds are affected, which causes considerable yield losses at harvest.

Transmission of RYMV occurs by way of insect vectors or by straightforward contact between plants. Prevention measures, like direct sowing or the burying of straw, have been implemented in order to limit the spread of the disease, but the real potential for reducing the impact of RYMV is to be found in the use of resistant varieties.


Variété de riz sensible au RYMV ou virus de la panachure jaune.

In certain rare traditional varieties of the Asian species of rice, Oryza sativa, and of the African variety, O. glaberrima, RYMV infection does not generally produce leaf symptoms, or have any impact on the harvest production. However, these varieties do not have the agronomic characteristics sought after for intensive irrigated cultivation or growing on low-lying land, where the disease provokes most damage. IRD geneticists have for several years been applying their research to the genetic bases of this resistance in order to facilitate its transfer to varieties that are agronomically useful yet susceptible to the virus with a view to optimizing their use.

Standard genetic studies first found evidence that resistance was controlled by a single recessive gene. Subsequent genetic mapping identified a fragment of chromosome 4 containing the resistance gene. Data from rice genome sequencing have been extremely useful for research on this fragment to find out if one gene rather than another could confer resistance to RYMV. Data from the literature indicates that gene eIF(iso)4G, involved in cellular RNA translation and named Rymv1, appeared to be the best candidate. Validation of the function of this resistance gene was performed by genetic transformation. For this, a line of resistant rice was modified by transgenically introducing the allele for susceptibility of this gene. The descendents of transformed plants that manifested restored susceptibility always showed the presence of the transgene.

Viruses are built with a small genome coding for a limited number of proteins (5 in the RYMVs). They therefore need their host’s proteins in order to accomplish each stage of their infection cycle. One of the proteins that the RYMV requires appears to be the eIF(iso)4G translation initiation factor coded by the Rymv1 gene which is probably involved in viral protein translation, but also perhaps in other processes such as the virus’s movement within the cell.

The research team discovered mutations of the gene they analysed in three different resistant varieties. These are distinct but are situated in the same domain of the gene in a patch on the surface favourable for interaction with the virus. In these varieties, the mutation does not appear to alter the protein’s role in its primary biological functions, but can prevent its interaction with the virus which is then blocked in one of the stages of its infectious cycle.

In parallel, a team of IRD virologists showed that it was possible to carry out laboratory selection of RYMV strains that break the gene’s resistance and that the process involved was determined by mutations in one of the viral proteins. The two approaches are now being combined in order to determine the molecular mechanisms of resistance or susceptibility on the basis of direct interactions between the rice protein and that of the virus. Understanding of these mechanisms will give clues as to the best ways of making long-term use of this resistance gene.

Another strategy developed by the IRD for combating this virus involves introducing part of the viral genes into the plant genome by transgenesis, as has been done in other plant/virus interactions, with the aim of inducing resistance to RYMV. The results show that the transgenic plants have only partial resistance, and for only a short time, and can even end up with a heightened susceptibility. In the particular case of the rice/RYMV interaction, the strategy of introducing a viral gene by transgenic techniques does not bring any advantages compared with the use of natural resistance.

This research can find applications in ways of improving rice production in countries hit by RYMV. Already, the IRD has transferred the gene Rymv1, by crossing, into some agronomically important varieties. The corresponding lineages have been given to various national (Ivory Coast, Senegal, Madagascar) and international research institutions such as the African Rice Centre (Warda, Benin) for them to use in variety selection programmes.

Aude Sonneville
Translation : Nicholas Flay
Glossaire :
(1) Messenger RNA: a ribonucleic acid transcribed from the DNA of a gene and which serves as a model for translation of a protein.

(2) Allele: each of the different possible forms of the same gene.

Marie Guillaume | alfa
Further information:
http://www.ird.fr
http://www.ird.fr/fr/actualites/fiches/2006/fas247.pdf

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>