Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The morphological adaptability of rice has at last been modelled

29.08.2006
If a climate is too hot or too dry, or the opposite, plants are exposed to stress, but they are capable of adapting. Researchers can thus assess their resistance to stress, which may also lead plants to change their morphology and even their architecture, at any stage of their development.

This plasticity is of crucial importance for crop productivity in variable, heterogeneous environments; it is thus a target for varietal breeding operations. However, to date, it has not been studied in detail. The modelling tool developed by the Oryzon project, which has just been completed, can now be used for this purpose in the case of rice.

It offers the possibility of simulating how new organs develop in rice plants, depending on assimilated nurtient availability within the plant. That availability is reflected in the levels of certain sugars. Sugar concentration is governed by enzyme activity, and acts as a signal, and thus as a regulator, in the zones that give rise to new organs. Plants thus adjust their morphology (root system and leaf size and number). It is these parameters that govern access to nutrient stocks, environmental stress resistance and competition with weeds.

To achieve this result, numerous observations were carried out, in controlled environments, on a range of rice varieties and mutants subjected to various constraints: phosphorus deficiency, shade periods, drought, etc. The morphogenesis of the rice plants and their organs, sugar content and key enzyme activity were measured. One major plasticity mechanism was demonstrated: in response to a phosphorus deficiency, root growth is stimulated–no doubt to improve access to the available phosphorus–through repeated inhibition of aerial system growth. This reduces carbon demand from the aerial organs, surplus assimilated nutritients are set aside and root growth is accelerated. Conversely, in the event of low sunshine levels, root system growth is inhibited in favour of leaf and stem elongation–no doubt in the search for light–while organogenesis is slowed down.

Modelling these adaptation processes could also serve to develop powerful molecular markers for use in varietal creation, avoiding the need for genetically modified organisms.

Helen Burford | alfa
Further information:
http://www.cirad.fr

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>