Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The morphological adaptability of rice has at last been modelled

29.08.2006
If a climate is too hot or too dry, or the opposite, plants are exposed to stress, but they are capable of adapting. Researchers can thus assess their resistance to stress, which may also lead plants to change their morphology and even their architecture, at any stage of their development.

This plasticity is of crucial importance for crop productivity in variable, heterogeneous environments; it is thus a target for varietal breeding operations. However, to date, it has not been studied in detail. The modelling tool developed by the Oryzon project, which has just been completed, can now be used for this purpose in the case of rice.

It offers the possibility of simulating how new organs develop in rice plants, depending on assimilated nurtient availability within the plant. That availability is reflected in the levels of certain sugars. Sugar concentration is governed by enzyme activity, and acts as a signal, and thus as a regulator, in the zones that give rise to new organs. Plants thus adjust their morphology (root system and leaf size and number). It is these parameters that govern access to nutrient stocks, environmental stress resistance and competition with weeds.

To achieve this result, numerous observations were carried out, in controlled environments, on a range of rice varieties and mutants subjected to various constraints: phosphorus deficiency, shade periods, drought, etc. The morphogenesis of the rice plants and their organs, sugar content and key enzyme activity were measured. One major plasticity mechanism was demonstrated: in response to a phosphorus deficiency, root growth is stimulated–no doubt to improve access to the available phosphorus–through repeated inhibition of aerial system growth. This reduces carbon demand from the aerial organs, surplus assimilated nutritients are set aside and root growth is accelerated. Conversely, in the event of low sunshine levels, root system growth is inhibited in favour of leaf and stem elongation–no doubt in the search for light–while organogenesis is slowed down.

Modelling these adaptation processes could also serve to develop powerful molecular markers for use in varietal creation, avoiding the need for genetically modified organisms.

Helen Burford | alfa
Further information:
http://www.cirad.fr

More articles from Agricultural and Forestry Science:

nachricht Raiding the rape field
23.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>