Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The morphological adaptability of rice has at last been modelled

29.08.2006
If a climate is too hot or too dry, or the opposite, plants are exposed to stress, but they are capable of adapting. Researchers can thus assess their resistance to stress, which may also lead plants to change their morphology and even their architecture, at any stage of their development.

This plasticity is of crucial importance for crop productivity in variable, heterogeneous environments; it is thus a target for varietal breeding operations. However, to date, it has not been studied in detail. The modelling tool developed by the Oryzon project, which has just been completed, can now be used for this purpose in the case of rice.

It offers the possibility of simulating how new organs develop in rice plants, depending on assimilated nurtient availability within the plant. That availability is reflected in the levels of certain sugars. Sugar concentration is governed by enzyme activity, and acts as a signal, and thus as a regulator, in the zones that give rise to new organs. Plants thus adjust their morphology (root system and leaf size and number). It is these parameters that govern access to nutrient stocks, environmental stress resistance and competition with weeds.

To achieve this result, numerous observations were carried out, in controlled environments, on a range of rice varieties and mutants subjected to various constraints: phosphorus deficiency, shade periods, drought, etc. The morphogenesis of the rice plants and their organs, sugar content and key enzyme activity were measured. One major plasticity mechanism was demonstrated: in response to a phosphorus deficiency, root growth is stimulated–no doubt to improve access to the available phosphorus–through repeated inhibition of aerial system growth. This reduces carbon demand from the aerial organs, surplus assimilated nutritients are set aside and root growth is accelerated. Conversely, in the event of low sunshine levels, root system growth is inhibited in favour of leaf and stem elongation–no doubt in the search for light–while organogenesis is slowed down.

Modelling these adaptation processes could also serve to develop powerful molecular markers for use in varietal creation, avoiding the need for genetically modified organisms.

Helen Burford | alfa
Further information:
http://www.cirad.fr

More articles from Agricultural and Forestry Science:

nachricht Robotic weeders: to a farm near you?
10.01.2018 | American Society of Agronomy

nachricht Alfalfa loss? Annual ryegrass is a win
03.01.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>