Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why piglets shudder to keep warm

18.08.2006
Researchers at Uppsala University, Sweden, have uncovered a genetic reason why newborn piglets are less tolerant to cold than other newborn mammals. It turns out that the gene that codes for the protein UCP1 was inactivated some 20 million years ago in the evolutionary line that pigs belong to. These findings, available online at http://dx.doi.org/10.1371/journal.pgen.0020129, are presented in the latest issue of the scientific journal PLloS Genetics.

Brown fat plays an important role in newborn mammals, including our own children, since this tissue helps the newborn to maintain its body temperature by burning fat, which converts into heat. The protein UCP1 (Uncoupling Protein 1) has a key role in this energy conversion, which takes place in the cell mitochondria.

Piglets are sensitive to cold and shudder in order to maintain their body heat. No brown fat or UCP1 protein has previously been found in domesticated pigs. In a new study, Frida Berg and her colleagues have been able to show that the UCP1 gene was shut down about 20 million years ago in an ancestor of the wild boar. These scientists have found four different mutations, each of which would be sufficient to knock out the function of the protein.

“This ancestor of pigs thereby lost the ability to use brown fat to maintain body temperature after birth. A reasonable explanation for this is that brown fat was not essential during a period in the evolution of pigs, when it lived in a warm climate,” says Leif Andersson, who directs the research team.

The ancestor of the domesticated pig, the wild boar, is the only pig that lives in cold climates. All other species, such as the wart hog, live in tropical or subtropical climates. The wild boar has compensated for the loss of brown fat by a series of adaptations for survival in a cold climate. It is the only hoofed animal that builds a den when it is time to give birth (Figure 1), and its young shudder to maintain their body temperature. A previous study has shown that the temperature in such a den can be as high as 20o C in an outdoor temperature of -20o C. In modern pig production heat lamps are used to help the newborn piglets retain their body temperature (Figure 2).

The findings show that an important biological function can be lost if it is not vital to life during a period in the evolutionary history of a species, and that if the living conditions once again change, compensatory mechanisms can be developed. The lack of UCP1 and brown fat in the pig resembles the inability of humans to produce vitamin C, a feature we lost during our evolutionary history.

“The findings we present are fully consistent with the theory of evolution. An important trait can be lost if it is not absolutely necessary to life during the development of a species,” says Leif Andersson.

“At the time the study illustrates why the idea of intelligent design is such a poor explanatory model for the variation we find in nature. If a creator happened to make a mistake with the UCP1 gene in the pig, why four different mistakes when one would have been enough to disrupt gene function. And why was the same mistake made when the wart hog and other closely related species were created? It cannot possibly be a matter of intelligent design.”

Anneli Waara | alfa
Further information:
http://www.uu.se
http://www.plosgenetics.org

More articles from Agricultural and Forestry Science:

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020

21.11.2017 | Physics and Astronomy

Borophene shines alone as 2-D plasmonic material

21.11.2017 | Materials Sciences

Penn study identifies new malaria parasites in wild bonobos

21.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>