Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why piglets shudder to keep warm

18.08.2006
Researchers at Uppsala University, Sweden, have uncovered a genetic reason why newborn piglets are less tolerant to cold than other newborn mammals. It turns out that the gene that codes for the protein UCP1 was inactivated some 20 million years ago in the evolutionary line that pigs belong to. These findings, available online at http://dx.doi.org/10.1371/journal.pgen.0020129, are presented in the latest issue of the scientific journal PLloS Genetics.

Brown fat plays an important role in newborn mammals, including our own children, since this tissue helps the newborn to maintain its body temperature by burning fat, which converts into heat. The protein UCP1 (Uncoupling Protein 1) has a key role in this energy conversion, which takes place in the cell mitochondria.

Piglets are sensitive to cold and shudder in order to maintain their body heat. No brown fat or UCP1 protein has previously been found in domesticated pigs. In a new study, Frida Berg and her colleagues have been able to show that the UCP1 gene was shut down about 20 million years ago in an ancestor of the wild boar. These scientists have found four different mutations, each of which would be sufficient to knock out the function of the protein.

“This ancestor of pigs thereby lost the ability to use brown fat to maintain body temperature after birth. A reasonable explanation for this is that brown fat was not essential during a period in the evolution of pigs, when it lived in a warm climate,” says Leif Andersson, who directs the research team.

The ancestor of the domesticated pig, the wild boar, is the only pig that lives in cold climates. All other species, such as the wart hog, live in tropical or subtropical climates. The wild boar has compensated for the loss of brown fat by a series of adaptations for survival in a cold climate. It is the only hoofed animal that builds a den when it is time to give birth (Figure 1), and its young shudder to maintain their body temperature. A previous study has shown that the temperature in such a den can be as high as 20o C in an outdoor temperature of -20o C. In modern pig production heat lamps are used to help the newborn piglets retain their body temperature (Figure 2).

The findings show that an important biological function can be lost if it is not vital to life during a period in the evolutionary history of a species, and that if the living conditions once again change, compensatory mechanisms can be developed. The lack of UCP1 and brown fat in the pig resembles the inability of humans to produce vitamin C, a feature we lost during our evolutionary history.

“The findings we present are fully consistent with the theory of evolution. An important trait can be lost if it is not absolutely necessary to life during the development of a species,” says Leif Andersson.

“At the time the study illustrates why the idea of intelligent design is such a poor explanatory model for the variation we find in nature. If a creator happened to make a mistake with the UCP1 gene in the pig, why four different mistakes when one would have been enough to disrupt gene function. And why was the same mistake made when the wart hog and other closely related species were created? It cannot possibly be a matter of intelligent design.”

Anneli Waara | alfa
Further information:
http://www.uu.se
http://www.plosgenetics.org

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>