Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSU biofuels research fills need for new sources

07.08.2006
The words are becoming familiar, even if the products aren't: biofuel, biobased, biodiesel, bioethanol.

All refer to fuel that's made from bio-produced materials such as plants. Chengci Chen (pronounced Chen-see Chen), an assistant professor of cropping systems at the Central Agricultural Research Center at Moccasin, and his collaborators are investigating Montana's potential for producing biofuels using "biomass," which refers to all biologically produced materials like grains, straw, hay, trees and fruits. He and his collaborators are working on a project to evaluate the ethanol production potential of various straws, hays, and silages in Montana.

People can make fuel from many kinds of plants, though over 90 percent of ethanol made in the United States comes from corn grain. However, other sources of ethanol are needed, because even if the entire United States' corn crop was used for ethanol, it would meet only 10 percent of the country's fuel needs.

So researchers are looking for new sources for ethanol. Since the jury is still out on what combination of sources will be best to replace petrol, Chen is working with sources that will be more universally available -- especially in Montana.

Chen is working on the issue from two directions. First, he is looking at how to maximize the volume of Montana crops or their residues with less input. At the same time, he is looking for the most efficient enzyme to break down the biomass into sugars and also looking at microorganisms that can ferment the sugars into fuel.

Daniel Kammen, director of the Renewable and Appropriate Energy Lab at the University of California at Berkeley, said in a recent email that rapid technological advances in the production of such cellulosic ethanol are contributing to its tremendous potential as an easy-to-use fuel in conventional vehicles.

How best to bring that tremendous potential to Montana is just what Chen and his collaborators are researching.

"If we use grass and straw, you can find the stock everywhere," Chen said. "It is widely available in many regions of the country, rather than being limited to the Corn Belt, and it has the potential to have higher production in Montana."

The United States is facing increasing energy challenges. President Bush's proposal for additional clean-energy research in his State of the Union Address acknowledged the need for extensive research in biofuel, and the U.S. Department of Energy announced this month an ambitious research agenda for developing cellulosic ethanol. The Department of Energy called it in a news release "a renewable, cleaner-burning, and carbon-neutral alternative to gasoline" and "an economically viable transportation fuel."

"Montana farms produce 10 million tons of wheat and barley straw that are typically left in the field. An additional five million tons of hay are produced annually," said Dave Wichman, superintendent of the Central Ag Research Center "The advantage of using annual farm crops for ethanol production is that farmers can produce biomass with conventional crops and equipment, and can alternate crop production for energy, food or feed," he added.

In areas with irrigation and enough heat, a double-cropping system with winter cereals and warm season grasses like winter triticale and sweet sorghum, can be adopted.

"The biomass production increases by as much as 50 percent using this system compared to a single-cropping system," Chen explained. "Even perennial grasses like switchgrass might be grown on marginal lands or lands retired from the Conservation Reserve Program."

Chen is working with scientists at the Biological Engineering Department of North Carolina State University to screen chemicals and enzymes that pretreat and convert biomass into sugars.

"Biomass energy can contribute to cleaner air through reduction in greenhouse gas emissions. It can also improve rural economies, and reduce energy dependence on foreign petroleum oils," said Ralph Peck, director of the Institute for Biobased Products at MSU. The institute has funded Chen's research after receiving a line-item appropriation through Sen. Conrad Burns, R-Mont.

"One of our goals is to make the new ethanol production methods from biomass competitive," Peck said.

The collaborators in the project include Wichman at Central, Duane Johnson at the Northwestern Agricultural Research Center at Kalispell, Xinghong Yang in MSU's Veterinary Molecular Biology Department, and Ratna Sharma-Shivappa at North Carolina State University.

Contact: Chengci Chen (406) 423-5421 or cchen@montana.edu, Ralph Peck (406) 459-6419 or rpeck@montana.edu

Chengci Chen | EurekAlert!
Further information:
http://www.montana.edu

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>