Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSU biofuels research fills need for new sources

07.08.2006
The words are becoming familiar, even if the products aren't: biofuel, biobased, biodiesel, bioethanol.

All refer to fuel that's made from bio-produced materials such as plants. Chengci Chen (pronounced Chen-see Chen), an assistant professor of cropping systems at the Central Agricultural Research Center at Moccasin, and his collaborators are investigating Montana's potential for producing biofuels using "biomass," which refers to all biologically produced materials like grains, straw, hay, trees and fruits. He and his collaborators are working on a project to evaluate the ethanol production potential of various straws, hays, and silages in Montana.

People can make fuel from many kinds of plants, though over 90 percent of ethanol made in the United States comes from corn grain. However, other sources of ethanol are needed, because even if the entire United States' corn crop was used for ethanol, it would meet only 10 percent of the country's fuel needs.

So researchers are looking for new sources for ethanol. Since the jury is still out on what combination of sources will be best to replace petrol, Chen is working with sources that will be more universally available -- especially in Montana.

Chen is working on the issue from two directions. First, he is looking at how to maximize the volume of Montana crops or their residues with less input. At the same time, he is looking for the most efficient enzyme to break down the biomass into sugars and also looking at microorganisms that can ferment the sugars into fuel.

Daniel Kammen, director of the Renewable and Appropriate Energy Lab at the University of California at Berkeley, said in a recent email that rapid technological advances in the production of such cellulosic ethanol are contributing to its tremendous potential as an easy-to-use fuel in conventional vehicles.

How best to bring that tremendous potential to Montana is just what Chen and his collaborators are researching.

"If we use grass and straw, you can find the stock everywhere," Chen said. "It is widely available in many regions of the country, rather than being limited to the Corn Belt, and it has the potential to have higher production in Montana."

The United States is facing increasing energy challenges. President Bush's proposal for additional clean-energy research in his State of the Union Address acknowledged the need for extensive research in biofuel, and the U.S. Department of Energy announced this month an ambitious research agenda for developing cellulosic ethanol. The Department of Energy called it in a news release "a renewable, cleaner-burning, and carbon-neutral alternative to gasoline" and "an economically viable transportation fuel."

"Montana farms produce 10 million tons of wheat and barley straw that are typically left in the field. An additional five million tons of hay are produced annually," said Dave Wichman, superintendent of the Central Ag Research Center "The advantage of using annual farm crops for ethanol production is that farmers can produce biomass with conventional crops and equipment, and can alternate crop production for energy, food or feed," he added.

In areas with irrigation and enough heat, a double-cropping system with winter cereals and warm season grasses like winter triticale and sweet sorghum, can be adopted.

"The biomass production increases by as much as 50 percent using this system compared to a single-cropping system," Chen explained. "Even perennial grasses like switchgrass might be grown on marginal lands or lands retired from the Conservation Reserve Program."

Chen is working with scientists at the Biological Engineering Department of North Carolina State University to screen chemicals and enzymes that pretreat and convert biomass into sugars.

"Biomass energy can contribute to cleaner air through reduction in greenhouse gas emissions. It can also improve rural economies, and reduce energy dependence on foreign petroleum oils," said Ralph Peck, director of the Institute for Biobased Products at MSU. The institute has funded Chen's research after receiving a line-item appropriation through Sen. Conrad Burns, R-Mont.

"One of our goals is to make the new ethanol production methods from biomass competitive," Peck said.

The collaborators in the project include Wichman at Central, Duane Johnson at the Northwestern Agricultural Research Center at Kalispell, Xinghong Yang in MSU's Veterinary Molecular Biology Department, and Ratna Sharma-Shivappa at North Carolina State University.

Contact: Chengci Chen (406) 423-5421 or cchen@montana.edu, Ralph Peck (406) 459-6419 or rpeck@montana.edu

Chengci Chen | EurekAlert!
Further information:
http://www.montana.edu

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>