Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Super blackcurrants with boosted vitamin C

Scientists are working with the company behind the fruit drink Ribena to boost the vitamin C content of blackcurrants in a move that would be a major benefit to UK consumers and farmers. Researchers have tracked the production and storage of vitamin C in blackcurrant bushes and are now studying the factors that determine the levels of the nutrient in the fruit.

Working out how to boost the vitamin C content of blackcurrants would help to promote consumption of the vital nutrient and also improve juice quality, providing a boon to UK agriculture which has massively increased the country’s blackcurrant crop in recent years.

The scientists, based at the Scottish Crop Research Institute (SCRI) and East Malling Research in Kent, have used tracers to identify where and when vitamin C is produced in blackcurrant bushes and how it moves throughout the plant. Using different strains of blackcurrant plant the team can compare and analyse how the vitamin accumulates in the blackcurrant fruit as well as the limiting factors.

To date the research has discovered that starch that accumulates after the berries have been harvested plays a key role in determining vitamin C production the following year. The scientists are now adjusting carbohydrate levels across the entire plant to alter starch deposits to explore how this affects vitamin levels and fruit quality.

Dr Robert Hancock, the research leader at SCRI, said: “Understanding how and when vitamin C is produced and accumulates in the blackcurrant plants has clear benefits for the consumer. We can grow crops that produce juice that will have higher levels of vitamin C and a better taste. Vitamin C is vital to tissue growth and repair and gives a big boost to the immune system but because it dissolves in water the body cannot store it.

“We need to eat vitamin C rich food every day but people just do not get enough. Blackcurrants contain more vitamin C than oranges so boosting that even further can only be a good thing. Blackcurrant production has soared in the UK in the last few years as demand has rocketed across Europe. If we can help to improve the crop we can give UK farmers a better, sustainable product to sell that will ensure they have a competitive edge.”

The project has another two years to run and there are still some key questions to be explored. Dr Hancock explained: “We have explored whether vitamin production takes place in the leaves or the blackcurrant fruit and answered important questions about why levels drop off as fruit ripens, just when we are about to eat it. Now we want to develop the techniques and knowledge we need to accelerate the breeding of super blackcurrant bushes.”

The team have received £1.2M in funding through the Horticulture LINK programme. This has contributions from the Biotechnology and Biological Sciences Research Council (BBSRC), GlaxoSmithKline, the Horticulture Development Council and the Scottish Executive Environment and Rural Affairs Department (SEERAD).

Professor Nigel Brown, Director of Science and Technology at BBSRC, commented: “BBSRC is a strong supporter of this type of research where basic plant science can help to improve the dietary and health benefits of popular foodstuffs. This is an example of how collaboration between different research groups with public and commercial research funding can produce real benefits for consumers, producers and the UK food industry.”

Matt Goode | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>