Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Super blackcurrants with boosted vitamin C

01.08.2006
Scientists are working with the company behind the fruit drink Ribena to boost the vitamin C content of blackcurrants in a move that would be a major benefit to UK consumers and farmers. Researchers have tracked the production and storage of vitamin C in blackcurrant bushes and are now studying the factors that determine the levels of the nutrient in the fruit.

Working out how to boost the vitamin C content of blackcurrants would help to promote consumption of the vital nutrient and also improve juice quality, providing a boon to UK agriculture which has massively increased the country’s blackcurrant crop in recent years.

The scientists, based at the Scottish Crop Research Institute (SCRI) and East Malling Research in Kent, have used tracers to identify where and when vitamin C is produced in blackcurrant bushes and how it moves throughout the plant. Using different strains of blackcurrant plant the team can compare and analyse how the vitamin accumulates in the blackcurrant fruit as well as the limiting factors.

To date the research has discovered that starch that accumulates after the berries have been harvested plays a key role in determining vitamin C production the following year. The scientists are now adjusting carbohydrate levels across the entire plant to alter starch deposits to explore how this affects vitamin levels and fruit quality.

Dr Robert Hancock, the research leader at SCRI, said: “Understanding how and when vitamin C is produced and accumulates in the blackcurrant plants has clear benefits for the consumer. We can grow crops that produce juice that will have higher levels of vitamin C and a better taste. Vitamin C is vital to tissue growth and repair and gives a big boost to the immune system but because it dissolves in water the body cannot store it.

“We need to eat vitamin C rich food every day but people just do not get enough. Blackcurrants contain more vitamin C than oranges so boosting that even further can only be a good thing. Blackcurrant production has soared in the UK in the last few years as demand has rocketed across Europe. If we can help to improve the crop we can give UK farmers a better, sustainable product to sell that will ensure they have a competitive edge.”

The project has another two years to run and there are still some key questions to be explored. Dr Hancock explained: “We have explored whether vitamin production takes place in the leaves or the blackcurrant fruit and answered important questions about why levels drop off as fruit ripens, just when we are about to eat it. Now we want to develop the techniques and knowledge we need to accelerate the breeding of super blackcurrant bushes.”

The team have received £1.2M in funding through the Horticulture LINK programme. This has contributions from the Biotechnology and Biological Sciences Research Council (BBSRC), GlaxoSmithKline, the Horticulture Development Council and the Scottish Executive Environment and Rural Affairs Department (SEERAD).

Professor Nigel Brown, Director of Science and Technology at BBSRC, commented: “BBSRC is a strong supporter of this type of research where basic plant science can help to improve the dietary and health benefits of popular foodstuffs. This is an example of how collaboration between different research groups with public and commercial research funding can produce real benefits for consumers, producers and the UK food industry.”

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>