Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seven-year glitch: Cornell warns that Chinese GM cotton farmers are losing money due to 'secondary' pests

26.07.2006
Although Chinese cotton growers were among the first farmers worldwide to plant genetically modified (GM) cotton to resist bollworms, the substantial profits they have reaped for several years by saving on pesticides have now been eroded.

The reason, as reported by Cornell University researchers at the American Agricultural Economics Association (AAEA) Annual Meeting in Long Beach, Calif., July 25, is that other pests are now attacking the GM cotton.

The GM crop is known as Bt cotton, shorthand for the Bacillus thuringiensis gene inserted into the seeds to produce toxins. But these toxins are lethal only to leaf-eating bollworms. After seven years, populations of other insects -- such as mirids -- have increased so much that farmers are now having to spray their crops up to 20 times a growing season to control them, according to the study of 481 Chinese farmers in five major cotton-producing provinces.

"These results should send a very strong signal to researchers and governments that they need to come up with remedial actions for the Bt-cotton farmers. Otherwise, these farmers will stop using Bt cotton, and that would be very unfortunate," said Per Pinstrup-Andersen, the H.E. Babcock Professor of Food, Nutrition and Public Policy at Cornell, and the 2001 Food Prize laureate. Bt cotton, he said, can help reduce poverty and undernourishment problems in developing countries if properly used.

The study -- the first to look at the longer-term economic impact of Bt cotton -- found that by year three, farmers in the survey who had planted Bt cotton cut pesticide use by more than 70 percent and had earnings 36 percent higher than farmers planting conventional cotton. By 2004, however, they had to spray just as much as conventional farmers, which resulted in a net average income of 8 percent less than conventional cotton farmers because Bt seed is triple the cost of conventional seed.

In addition to Pinstrup-Andersen, the study was conducted by Shenghui Wang, Cornell Ph.D. '06 and now an economist at the World Bank, and Cornell professor David R. Just. They stress that secondary pest problems could become a major threat in countries where Bt cotton has been widely planted.

"Because of its touted efficiency, four major cotton-growing countries were quick to adopt Bt cotton: the U.S., China, India and Argentina," said Wang. Bt cotton accounts for 35 percent of cotton production worldwide. In China, more than 5 million farmers have planted Bt cotton; it is also widely planted in Mexico and South Africa.

When U.S. farmers plant Bt crops, they, unlike farmers in China, are required by contracts with seed producers to plant a refuge, a field of non-Bt crops, to maintain a bollworm population nearby to help prevent the pest from developing resistance to the Bt cotton. The pesticides used in these refuge fields help control secondary pest populations on the nearby Bt cotton fields. Researchers do not yet know if a secondary pest problem will emerge in the United States and other countries, Pinstrup-Andersen said.

"The problem in China is not due to the bollworm developing resistance to Bt cotton -- as some researchers have feared -- but is due to secondary pests that are not targeted by the Bt cotton and which previously have been controlled by the broad-spectrum pesticides used to control bollworms," added Pinstrup-Andersen, who also is serving as president of AAEA for 2007.

Wang and her co-authors conclude, "Research is urgently needed to develop and test solutions."

These include introducing natural predators to kill the secondary pests, developing Bt cotton that resists the secondary pests or enforcing the planting of refuge areas where broad-spectrum pesticides are used.

This study was jointly conducted by the Center for Chinese Agricultural Policy, Chinese Academy of Science and Cornell.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>