Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists map the flight of the bumblebee

26.07.2006
BUMBLEBEES have an incredible homing instinct that allows them to find their way home from up to eight miles away, according to research that aims to aid efforts to save the British bumblebee.

Bumblebees are being dropped off at famous landmarks in North East England by the Newcastle University researchers, who then observe if they can find their way back to a nest on campus.

Early results show the bees, which are tagged with tiny identification numbers in the laboratory, have flown back from the Metro Centre and the Angel of the North (three miles away, or 5 kilometres) and the Tyne Bridge and Manors Metro station (one mile, or 1.5k).

However, the record flight was from a garden centre in Heddon on the Wall in the Tyne Valley - some eight miles or 13km from their nest.

The researchers have found it is only the worker bees which make their way back - they suspect the queen bees find shelter elsewhere. The results are surprising because scientific literature says the bumblebee they are studying - a common species called Bombus terrestris - travels only 5km for its food.

The project aims to find out how far the bees can travel to get their food and if certain environments are trickier to navigate than others. This knowledge will ultimately help with conservation strategies that may involve adapting landscapes to create optimum habitats for bees.

There are 25 species of British bumblebee but their numbers have been declining in the last 50 years due to dramatic changes in the landscape caused by intense farming.

Bees are a crucial part of wildlife communities - known as ecosystems - because they pollinate plants in their search for their food, nectar and pollen from flowers. Worldwide, up to 40 per cent of the world's food production is due to pollination by wild bees, which include the bumblebee.

Steph O'Connor, who has just graduated from Newcastle University with a Wildlife Biology degree, is working on the project with insect specialists Dr Mark O'Neill and Dr Gordon Port, who is also a senior lecturer with the University's Division of Biology.

Steph, who hopes to continue her studies for a research degree, has spent several weeks attracting the attention of passers-by as she hovers near the hive - in a garden wall on campus - catching the bees in a large net.

She said: “The current scientific literature shows that bees normally forage within 5km, and this is probably correct. However, the findings of our research are intriguing, because it shows the bees can navigate their way home from further away than this.”

Scientists are unsure how bumblebees navigate. Vision is thought to be most Important, helping them to fly in straight lines and to use landmarks as clues. At very close range (no more than a metre or two) they use odour to find their way around.

Co-researcher, Dr Mark O'Neill, is plotting the bees' journeys using a computer programme, allowing him to build up a pattern of flight paths from different places. He said: “We are trying to find out more about how bees forage, or look for their food. We're particularly interested to see if they find certain environments easier to navigate.

“For example, do the bees find it easier to get home from the built-up urban environment that the Metro Centre occupies - or are they more comfortable navigating the green fields out in the Tyne Valley? All this is useful information for conservationists who are formulating strategies to prevent the bumblebee from decline.”

The project, which is funded by Newcastle University, is in its early stages but future hopes are to monitor variables such as the weather and its effect on the bees' homing capabilities.

Claire Jordan | alfa
Further information:
http://www.ncl.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>