Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiments with fruit quality improvement lead to new approach for halting spread of cancer cells

05.07.2006
Experimental work aimed at improving the quality of fruit has led to the discovery by Hebrew University of Jerusalem agricultural researchers of a promising new avenue of drug treatment for halting the growth and spread of cancer cells in animals and humans.

Their approach has been shown to inhibit the malignant cells without affecting normal cells and without the severe side effects of traditional treatments such as radiation and chemotherapy. The strategy involves isolating the malignant tumor from its nutritional and oxygen supplies, thereby halting its growth and stopping metastases (spread of cancer cells to other parts of the body).

The work on the project was carried out at the Hebrew University Faculty of Agricultural, Food and Environmental Quality Sciences in Rehovot by Prof. Oded Shoseyov, Dr. Levava Roiz, Dr. Patricia Smirnoff and Dr. Betty Schwartz. Their discoveries were published recently in the journal Cancer of the American Cancer Society.

The approach of the Hebrew University researchers is based on the actions of actibind, a protein that is produced by the black mold Aspergillus niger and that is a well-known microorganism used in bio and food technology. In plants, actibind binds actin, a major component of the intracellular structure in plants, interfering with the plants' pollen tubes and halting cell growth.

While the Hebrew University researchers were initially interested in the activity of actibind in connection with a horticultural project aimed at improving the quality of peaches and nectarines, an actibind-like protein, RNaseT2, was also subsequently found to bind actin in human and animal migrating cells, such as the cells that are responsible for new blood vessel formation (angiogenesis) in tumors.

By blocking the blood supply to the tumors, actibind halted the ability of malignant cells to move through the blood stream to form new metastases. A further plus is that actibind is not toxic to normal cells, thereby significantly minimizing the risk of side effects.

In laboratory experiments using cell cultures that originated from human colon cancer, breast cancer and melanoma, increasing the level of actibind was found to reduce the ability of these cells to form tumorogenic colonies. Further experimentation, with a variety of animal models, showed that the increased actibind inhibited the growth of colon cancer-derived tumors, metastases and blood vessel formation. These promising discoveries were detailed in the Cancer article.

The results shown in working with actibind led to a further development in the researchers' project. During the completion of the human genome project, the gene encoding for RNaseT2, the human actibind-like protein, was found on chromosome 6. The Hebrew University team used genetic engineering procedures to produce a recombinant RNaseT2 protein that showed an impressive anti-cancer potential. These results have raised broad interest in international scientific meetings and in business circles.

The fungal actibind and the human RNaseT2 represent the basis for a new class of drugs that could be used as a front-line therapy in the fight against cancer, say the researchers.

Jerry Barach | EurekAlert!
Further information:
http://www.huji.ac.il

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>