Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European Commission earmarks €12 million for plant growth research

29.06.2006
Plants are invaluable sources of food, medicine, renewable materials and energy.

But we still know relatively little about the biological processes that make them grow. AGRON-OMICS is a plant research consortium that includes John Innes Centre scientists John Doonan, Mike Bevan and Sean Walsh. The goal of the 5-year initiative in collaboration with nine other top European research institutes is to understand the network of biological processes involved in leaf growth.

Plants are essential to our daily life; they provide us with food, medicine, and renewable sources of materials and energy. It’s therefore sobering to realise that, in comparison to cancer for example, we still know very little about the mechanisms involved in plant growth. Given their crucial role for mankind, it is vital that we improve our knowledge about the biology of plants.

AGRON-OMICS (Arabidopsis GROwth Network integrating OMICS technologies) will conduct an in-depth study of leaf growth in the model plant species Arabidopsis thaliana. Over the next five years, this network of major European players in plant biology will perform experiments to identify the molecular components controlling growth and build mathematical models to explain how these components interact.

The significance of the initiative caught the attention of the European Commission, which is providing €12 million toward its success. With the exception of the Arabidopsis genome initiative, this is arguably the largest grant ever awarded in this area of research, and a clear indication of the social importance of a deep understanding of life processes in plants.

Vicky Just | alfa
Further information:
http://www.bbsrc.ac.uk
http://www.jic.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Diamond Lenses and Space Lasers at Photonics West

15.12.2017 | Trade Fair News

A better way to weigh millions of solitary stars

15.12.2017 | Physics and Astronomy

New epidemic management system combats monkeypox outbreak in Nigeria

15.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>