Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


From campfire to gas tank, Mesquite energy may be harvested for ethanol

The dense mesquite-covered mid-section of Texas could provide fuel for about 400 small ethanol plants, according to one Texas Agricultural Experiment Station researcher.

Dr. Jim Ansley, Experiment Station rangeland researcher at Vernon, is determining the feasibility of developing a bio-energy industry in rural West Central Texas. The industry would be based on the harvest and use of rangeland woody plants, such as mesquite and red berry juniper, as an energy source.

"We've had so much more interest in this since gas prices went up last summer," Ansley said. "That's going to be a real driving variable. If gas prices continue to go up, I think we could very well see a first generation refinery built in Texas to handle mesquite within five years."

The vision is to build as many as 400 refineries around the state based on mesquite wood. If other woods are considered, the number could go as high as 1,000, he said.

Working with an Aberdeen, Miss. company, Ansley is studying the supply, harvest technologies, ethanol conversion rates and ecological effects of mesquite-to-ethanol production.

One ton of mesquite wood will yield about 200 gallons of ethanol, he said. An acre of the densely populated mesquite standing 10 to 12 feet tall will yield about 8 to 10 tons of wood.

A commercial refinery producing 5 million gallons of ethanol per year will require about 30,000 acres to sustain it, an approximate four- to five-mile radius if the refinery is located near the middle of the mesquite stand, Ansley said.

"The thing that will make this fail is if people think a bigger refinery in the big cities is better," he said. "That's where it will fail. The transport costs to get the feedstock to the refinery will kill you."

Building smaller refineries in the rural regions where the mesquite is located is the key to making this work, he said. Each refinery would support about 30 jobs and enhance rural economies.

"One aspect of mesquite that makes it an attractive renewable fuel is once the above ground growth has been harvested, it sprouts back pretty vigorously," Ansley said. "We're looking at how long it takes before it can be economically harvested again."

A State Energy Conservation Office grant has allowed his team to study harvest of different regrowth rates, as well as develop a mechanized system of harvesting mesquite.

Working with private cooperators, Ansley has helped design a harvester that is in the patent-pending stages. He hopes to have it ready for demonstration at an Oct. 5 field day at the Vernon station.

"We've run some trials with it and we think we have a technique that is workable for gathering this mesquite wood," he said. "That has not been done before."

Ranchers have long been looking for a way to utilize the mesquite growing wild on their pasturelands, but until now, nothing has looked economical, Ansley said.

Mesquite could be used in a wood-fired power plant, but "we think there's much greater potential with ethanol."

A patented process to convert the wood into ethanol is being tested in a prototype plant in Mississippi, Ansley said.

In Texas, the prime area to harvest mesquite is the middle third of the state: a band bordered on the west by a line from Childress to Del Rio and on the east from Decatur to Austin.

"We're talking small travel distance from wood source to these refineries, about 4 to 5 miles," Ansley said. "They would process about 5 million gallons per year of ethanol, which would require about 30,000 acres. Only about 10 percent would be harvested each year, with about 10 years needed for regrowth."

Livestock and wildlife operations should co-exist with a harvest area and be improved with enhanced grass growth and patterned harvest of mesquite, he said.

"The economics are good now," Ansley said. "It just looks tremendously profitable to me today."

The largest expense – building a refinery – is expected to be about $8 million with a profitability of $2 million a year after expenses, he said.

"We're in the process of trying to measure how much energy it takes to harvest mesquite in the field," Ansley said. "That's probably our least researched area. Now that we have this machine constructed, we can start working on that."

Researchers will study different sizes and densities of mesquite and look at the time needed to harvest and the fuel used by the machinery and factor that into the total cost per acre.

"Right now we're estimating $300 per acre, but even if the cost was three times that, we'd still show a profit," Ansley said. "Honestly, I don't know why we haven't done this already, when I look at the numbers."

Dr. Jim Ansley | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Algorithm could streamline harvesting of hand-picked crops
13.03.2018 | University of Illinois College of Engineering

nachricht A global conflict: agricultural production vs. biodiversity
06.03.2018 | Georg-August-Universität Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>