Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harmful Algal Blooms monitored from space in Chile

13.06.2006
Chile is currently the world’s largest producer of farmed salmon and has a burgeoning mussel culture industry that is supplying a growing world market. However, the country’s marine aquaculture sector is vulnerable to Harmful Algal Blooms, which occur when some algae species producing poisons bloom rapidly in water, causing physical or biochemical damage to fish and shellfish.

Early detection of Harmful Algal Blooms (HABs) allows fish farmers to make timely key decisions in order to minimise the damage to aquaculture. To aid in this effort, a team led by Hatfield Consultants Ltd. (Hatfield), under the ESA-funded Chilean Aquaculture Project (CAP), has implemented an early warning service based on Earth Observation (EO) data, which delivers forecasts of potential HABs to aquaculture companies via a customised Internet portal.

HABs are a natural phenomenon that have increased in frequency over the last 30 years, causing millions of Euros worth of annual losses to the 360 fish farms found in the southern region of Chile. They deplete the concentration of oxygen in sea water, potentially killing larger caged fish such as salmon that cannot flee the affected area.

In the case of shellfish, such as mussels, toxins from the blooms accumulate in their body tissues and pose serious health risks for humans when consumed. For instance, in 2002 an HAB outbreak in Chile was responsible for 73 paralytic poisonings and two deaths. In 2004, more than 1500 cases of poisonings occurred resulting in an estimated 30 million Euro yearly loss. And in 2005, more than 10 000 cases were document, including one death.

Just like plants on land, algae employ green-pigmented chlorophyll for photosynthesis — the process of turning sunlight into chemical energy. The chlorophyll collectively tints the colour of the surrounding water, providing a means of detecting these tiny organisms from space with dedicated 'ocean colour' sensors onboard satellites.

The CAP project utilises a combination of near real-time EO data, such as chlorophyll-a pigment concentration, secchi transparency, suspended matter and sea surface temperature, derived from the MERIS instrument onboard ESA’s Envisat satellite and the MODIS instrument onboard NASA’s Aqua satellite and in situ water monitoring to monitor the Southern Ocean off the coast of Chile.

A hydrodynamic model, established and validated through the project, is also used to characterise the water circulation patterns in the major aquaculture area in southern Chile.

Aquaculture has become a capital-intensive industry in Chile, worth nearly 1 billion Euros a year with direct and indirect benefits for employment and other industries. The aquaculture industry in Chile and internationally has expressed great interest in the products and services developed under the CAP project. In particular, the HAB early warning service has been tested by Mainstream Chile, part of the Norwegian holding company CERMAQ, a world leader in salmon production.

Mainstream Group Development Manager Francisco Puga said: “The benefits of the CAP project are directly related to the operation of our company. The environmental monitoring and HAB detection is part of our daily operation procedures. Also, historical environmental information supports our strategic decisions for farm site location.

"To obtain the amount of information covered with the EO data, alternative methods will be of considerable higher cost. With in situ measurements you cannot produce a gradient map as obtained with EO images. The value of this information is the area and resolution obtained in a single didactic image."

Last month, the CAP project was presented at the AQUA2006 event organised by the World Aquaculture Society in Florence, Italy, triggering a lot of interest for EO-based information service in the aquaculture industry.

The CAP team, including Canada’s Hatfield, France’s ACRI, Chile’s Mainstream Chile and Italy’s AVS, has been supported within the framework of ESA’s Earth Observation Market Development programme.

Mariangela D'Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEMUS5AATME_economy_0.html

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>