Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tamed 11,400 years ago, figs were likely first domesticated crop

02.06.2006
Long before the grains, fig domestication may have marked a decisive shift in human history

Archaeobotanists have found evidence that the dawn of agriculture may have come with the domestication of fig trees in the Near East some 11,400 years ago, roughly a thousand years before such staples as wheat, barley, and legumes were domesticated in the region. The discovery dates domesticated figs to a period some 5,000 years earlier than previously thought, making the fruit trees the oldest known domesticated crop.

Ofer Bar-Yosef of Harvard University and Mordechai E. Kislev and Anat Hartmann of Bar-Ilan University report their findings in this week’s issue of the journal Science.

"Eleven thousand years ago, there was a critical switch in the human mind -- from exploiting the earth as it is to actively changing the environment to suit our needs," says Bar-Yosef, professor of anthropology in Harvard’s Faculty of Arts and Sciences and curator of Paleolithic archaeology at Harvard’s Peabody Museum of Archaeology and Ethnology. "People decided to intervene in nature and supply their own food rather than relying on what was provided by the gods. This shift to a sedentary lifestyle grounded in the growing of wild crops such as barley and wheat marked a dramatic change from 2.5 million years of human history as mobile hunter-gatherers."

The researchers found nine small figs and 313 fig drupelets (a small part of an aggregate fruit such as a fig) at Gilgal I, a village in the Lower Jordan Valley, just 8 miles north of ancient Jericho, known to have been inhabited for some 200 years before being abandoned roughly 11,200 years ago. The carbonized figs were not distorted, suggesting that they may have been dried for human consumption. Similar fig drupelets were found at a second site located some 1.5 kilometers west of Gilgal.

The scientists compared the ancient figs to modern wild and domesticated variants and determined that they were a mutant selectively propagated by humans. In this variety of fig, known as parthenocarpic, the fruit develops without insect pollination and is prevented from falling off the tree, allowing it to become soft, sweet, and edible. However, because such figs do not produce seeds, they are a reproductive dead end unless humans interfere by planting shoots from the parthenocarpic trees.

"Once the parthenocarpic mutation occurred, humans must have recognized that the resulting fruits do not produce new trees, and fig tree cultivation became a common practice," Bar-Yosef says. "In this intentional act of planting a specific variant of fig tree, we can see the beginnings of agriculture. This edible fig would not have survived if not for human intervention."

Figs are very easily propagated: A piece of stem stuck in the ground will sprout roots and grow into a plant. No grafting or seeds are necessary. Bar-Yosef, Kislev, and Hartmann suggest that this ease of planting, along with improved taste resulting from minor mutations, may explain why figs were domesticated some five millennia before other fruit trees, such as the grape, olive, and date.

"The reported Gilgal figs, stored together with other vegetal staples such as wild barley, wild oat, and acorns, indicate that the subsistence strategy of these early Neolithic farmers was a mixed exploitation of wild plants and initial fig domestication," Bar-Yosef says. "Apparently, this kind of economy, a mixture of cultivation of wild plants, planting fig trees and gathering other plant foods in nature, was widely practiced during the second half of the 12th millennium before present throughout the Levant, the western wing of the Fertile Crescent."

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>