Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tamed 11,400 years ago, figs were likely first domesticated crop

02.06.2006
Long before the grains, fig domestication may have marked a decisive shift in human history

Archaeobotanists have found evidence that the dawn of agriculture may have come with the domestication of fig trees in the Near East some 11,400 years ago, roughly a thousand years before such staples as wheat, barley, and legumes were domesticated in the region. The discovery dates domesticated figs to a period some 5,000 years earlier than previously thought, making the fruit trees the oldest known domesticated crop.

Ofer Bar-Yosef of Harvard University and Mordechai E. Kislev and Anat Hartmann of Bar-Ilan University report their findings in this week’s issue of the journal Science.

"Eleven thousand years ago, there was a critical switch in the human mind -- from exploiting the earth as it is to actively changing the environment to suit our needs," says Bar-Yosef, professor of anthropology in Harvard’s Faculty of Arts and Sciences and curator of Paleolithic archaeology at Harvard’s Peabody Museum of Archaeology and Ethnology. "People decided to intervene in nature and supply their own food rather than relying on what was provided by the gods. This shift to a sedentary lifestyle grounded in the growing of wild crops such as barley and wheat marked a dramatic change from 2.5 million years of human history as mobile hunter-gatherers."

The researchers found nine small figs and 313 fig drupelets (a small part of an aggregate fruit such as a fig) at Gilgal I, a village in the Lower Jordan Valley, just 8 miles north of ancient Jericho, known to have been inhabited for some 200 years before being abandoned roughly 11,200 years ago. The carbonized figs were not distorted, suggesting that they may have been dried for human consumption. Similar fig drupelets were found at a second site located some 1.5 kilometers west of Gilgal.

The scientists compared the ancient figs to modern wild and domesticated variants and determined that they were a mutant selectively propagated by humans. In this variety of fig, known as parthenocarpic, the fruit develops without insect pollination and is prevented from falling off the tree, allowing it to become soft, sweet, and edible. However, because such figs do not produce seeds, they are a reproductive dead end unless humans interfere by planting shoots from the parthenocarpic trees.

"Once the parthenocarpic mutation occurred, humans must have recognized that the resulting fruits do not produce new trees, and fig tree cultivation became a common practice," Bar-Yosef says. "In this intentional act of planting a specific variant of fig tree, we can see the beginnings of agriculture. This edible fig would not have survived if not for human intervention."

Figs are very easily propagated: A piece of stem stuck in the ground will sprout roots and grow into a plant. No grafting or seeds are necessary. Bar-Yosef, Kislev, and Hartmann suggest that this ease of planting, along with improved taste resulting from minor mutations, may explain why figs were domesticated some five millennia before other fruit trees, such as the grape, olive, and date.

"The reported Gilgal figs, stored together with other vegetal staples such as wild barley, wild oat, and acorns, indicate that the subsistence strategy of these early Neolithic farmers was a mixed exploitation of wild plants and initial fig domestication," Bar-Yosef says. "Apparently, this kind of economy, a mixture of cultivation of wild plants, planting fig trees and gathering other plant foods in nature, was widely practiced during the second half of the 12th millennium before present throughout the Levant, the western wing of the Fertile Crescent."

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Agricultural and Forestry Science:

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

nachricht Maize pest exploits plant defense compounds to protect itself
28.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>