Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials science brings new forest product opportunities

02.06.2006
Wood fibres turn up in a wide range of products. In addition to traditional paper and wood-based materials, they are also used for example in the food, textile and pharmaceutical industries. The scope of application of wood fibre could, however, be vastly broader than it is at present. With this objective in sight, new avenues are being opened up by cellulose-based nanofibres, which can be used to produce extremely strong and modifiable materials. These efforts are backed by growing pressures such as environmental requirements which lend ever stronger support to the demand for wider utilisation of new natural, fibre-based materials in future.

“Forest cluster companies operating in Finland are on the look out for new forest products. In order to be able to meet the challenges of these companies we need to improve the current level of know-how in wood-based products and wood processing at molecular level. New territory has been charted for example in the areas of composite and nanomaterials,” says Professor Janne Laine of the Helsinki University of Technology’s Department of Forest Products Technology.

Interest in cellulose-based nanofibres is primarily driven by its environmental value as a biomaterial. It is also known that nanomaterials can be used, for example, to achieve strength properties which are not attainable with particles of bigger size classes. Furthermore, the smaller the particle is, the bigger the surface area, which in turn increases the desired interactivity with other materials.

“One of the main application targets for new materials is the car industry, which wants to use lightweight cellulose fibres in car interior panelling. Estimates in terms of volume of the natural fibre requirement of the European car industry in 2010 are extremely substantial,” says Laine.

Professor Laine’s research team is one of five teams involved in examining and developing cellulose-based nanofibres as part of the Finnish-Swedish Wood Material Science and Engineering research programme.

Research demonstrates the versatility of wood fibre

According to Professor Janne Laine, the Nanostructured Cellulose Products research project has shown that wood fibre can be used to make an extremely versatile range of materials, both for traditional wood processing industry products as well as for totally new applications.

Cellulose fibres (30 micrometers wide, 2–3 millimetres long) consist of nanometre-scale microfibrils (4 nm wide, 100–200 nm long).

The chief objective of the project has been to produce uniform quality nanofibre (microfibrillated cellulose, MFC) from cellulose fibres by combining enzymatic or chemical treatment with mechanical processing. The second objective has been to attempt to functionalise the surfaces of the microfibrils, e.g. by means of polymers in order to be able to utilise the converted fibrils in as many materials as possible. The third objective has been to demonstrate how cellulose fibrils can give totally new properties to a range of different materials.

The project has achieved an 80 percent reduction in the energy requirement of microfibrillar cellulose manufacture as compared to levels formerly claimed in literature. In addition, enzymatic pre-treatment combined with specific mechanical treatments has produced microfibrils of extremely high and uniform quality.

Boosting material conductivity, strength, elasticity, lightness and self-cleaning properties

“We’ve succeeded in modifying the surfaces of microfibrils e.g. by means of different polymers, which has, for instance, enabled us to make their surfaces more electrically charged. Microfibrils give considerable toughness and strength to traditional paper products even in small quantities. Correspondingly, microfibrils, as so-called nanocomposite structures, form an extremely high-strength material (e.g. film) the plasticity (elasticity) of which is possible to regulate for example by means of starch,” says Laine.

“Cellulose microfibrils can also be used to make ultra-light materials. By combining fibrils with conductive polymers, we’ve been able to make cellulose based structures which conduct electricity. It’s also been possible to coat microfibrils with a thin layer of titanium dioxide, which makes the material photocatalytically active. Titanium dioxide coated microfibrillar cellulose could be used, for instance, in solar cells and applications in which self-cleaning surfaces are needed, such as filters.”

Leena Vahakyla | alfa
Further information:
http://www.aka.fi
http://www.aka.fi/eng

More articles from Agricultural and Forestry Science:

nachricht Combination of Resistance Genes Offers Better Protection for Wheat against Powdery Mildew
22.01.2018 | Universität Zürich

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>