Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials science brings new forest product opportunities

02.06.2006
Wood fibres turn up in a wide range of products. In addition to traditional paper and wood-based materials, they are also used for example in the food, textile and pharmaceutical industries. The scope of application of wood fibre could, however, be vastly broader than it is at present. With this objective in sight, new avenues are being opened up by cellulose-based nanofibres, which can be used to produce extremely strong and modifiable materials. These efforts are backed by growing pressures such as environmental requirements which lend ever stronger support to the demand for wider utilisation of new natural, fibre-based materials in future.

“Forest cluster companies operating in Finland are on the look out for new forest products. In order to be able to meet the challenges of these companies we need to improve the current level of know-how in wood-based products and wood processing at molecular level. New territory has been charted for example in the areas of composite and nanomaterials,” says Professor Janne Laine of the Helsinki University of Technology’s Department of Forest Products Technology.

Interest in cellulose-based nanofibres is primarily driven by its environmental value as a biomaterial. It is also known that nanomaterials can be used, for example, to achieve strength properties which are not attainable with particles of bigger size classes. Furthermore, the smaller the particle is, the bigger the surface area, which in turn increases the desired interactivity with other materials.

“One of the main application targets for new materials is the car industry, which wants to use lightweight cellulose fibres in car interior panelling. Estimates in terms of volume of the natural fibre requirement of the European car industry in 2010 are extremely substantial,” says Laine.

Professor Laine’s research team is one of five teams involved in examining and developing cellulose-based nanofibres as part of the Finnish-Swedish Wood Material Science and Engineering research programme.

Research demonstrates the versatility of wood fibre

According to Professor Janne Laine, the Nanostructured Cellulose Products research project has shown that wood fibre can be used to make an extremely versatile range of materials, both for traditional wood processing industry products as well as for totally new applications.

Cellulose fibres (30 micrometers wide, 2–3 millimetres long) consist of nanometre-scale microfibrils (4 nm wide, 100–200 nm long).

The chief objective of the project has been to produce uniform quality nanofibre (microfibrillated cellulose, MFC) from cellulose fibres by combining enzymatic or chemical treatment with mechanical processing. The second objective has been to attempt to functionalise the surfaces of the microfibrils, e.g. by means of polymers in order to be able to utilise the converted fibrils in as many materials as possible. The third objective has been to demonstrate how cellulose fibrils can give totally new properties to a range of different materials.

The project has achieved an 80 percent reduction in the energy requirement of microfibrillar cellulose manufacture as compared to levels formerly claimed in literature. In addition, enzymatic pre-treatment combined with specific mechanical treatments has produced microfibrils of extremely high and uniform quality.

Boosting material conductivity, strength, elasticity, lightness and self-cleaning properties

“We’ve succeeded in modifying the surfaces of microfibrils e.g. by means of different polymers, which has, for instance, enabled us to make their surfaces more electrically charged. Microfibrils give considerable toughness and strength to traditional paper products even in small quantities. Correspondingly, microfibrils, as so-called nanocomposite structures, form an extremely high-strength material (e.g. film) the plasticity (elasticity) of which is possible to regulate for example by means of starch,” says Laine.

“Cellulose microfibrils can also be used to make ultra-light materials. By combining fibrils with conductive polymers, we’ve been able to make cellulose based structures which conduct electricity. It’s also been possible to coat microfibrils with a thin layer of titanium dioxide, which makes the material photocatalytically active. Titanium dioxide coated microfibrillar cellulose could be used, for instance, in solar cells and applications in which self-cleaning surfaces are needed, such as filters.”

Leena Vahakyla | alfa
Further information:
http://www.aka.fi
http://www.aka.fi/eng

More articles from Agricultural and Forestry Science:

nachricht Two Most Destructive Termite Species Forming Superswarms in South Florida
27.03.2015 | University of Florida Institute of Food and Agricultural Sciences

nachricht Greater-than-additive management effects key in reducing corn yield gaps
18.03.2015 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Biology in a twist -- deciphering the origins of cell behavior

31.03.2015 | Life Sciences

Wrapping carbon nanotubes in polymers enhances their performance

31.03.2015 | Materials Sciences

Research Links Two Millennia of Cyclones, Floods, El Niño

31.03.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>