Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spruce HMR lignan may slow development of hormonal cancers: Health effects from bioactive substances in tree knots

02.06.2006
Knot heartwood, i.e. the knot or branch section contained within the tree stem, has been found to contain considerably large amounts of phenolic protective agents. These bioactive substances contained in knot heartwood can be isolated and utilised e.g. in health foods and medicines or as special chemicals in other products. This year has seen the first tree knot extract product brought onto the market. Current interest is centred around HMR lignan, which has been isolated from spruce knot heartwood. Experimental research shows HMR to have a slowing effect on the development of e.g. hormonal cancers.

“Knot heartwood is easily utilised because it’s delivered along with the wood raw material to pulp and paper mills, where it can be separated out via a relatively simple process,” says Professor Bjarne Holmbom of Åbo Akademi University. Holmbom’s team at the Centre of Excellence in Process Chemistry has been researching components derived from wood and their properties as a part of the Wood Material Science and Engineering Research Programme of the Academy of Finland and Tekes, Finnish Funding Agency for Technology and Innovation.

The study, led by Holmbom, has analysed the knot heartwood of the main wood species in Finland as well as a number of foreign species. The first knot derivative product brought onto the market this year, HMR lignan isolated from spruce knot heartwood, will be marketed as a food additive. According to research carried out under the direction of Professor Risto Santti and Professor Sari Mäkelä at the University of Turku, HMR lignan slows down the development of hormonal cancers under test conditions. The substance may also have positive affects on cardiovascular diseases and other oestrogen dependent health problems such as menopause related conditions and osteoporosis.

“We don’t know whether this will be the next global brand after Benecol or Xylitol, but it has all the potential and there’s hope that it will,” says Holmbom.

Antioxidants in tree bark

Research by the Wood Material Science and Engineering Research Programme has, under Holmbom’s direction, also focused on derivatives of tree bark. Tree bark contains a variety of bioactive protective substances. For example, spruce bark contains large quantities of stilbenes which have numerous beneficial health effects.

“Research into natural sources of stilbenes has intensified in recent years. Studies are concentrated primarily on resveratrol, which has proven to be a strong antioxidant. It’s been shown to prevent the development of cancer and prolong cell lifespan,” Bjarne Holmbom says. Resveratrol is also found in the peel of black grapes and thus also in red wine.

Spruce bark contains small amounts of resveratrol but huge quantities, as much as ten percent of its own weight, of similar types of stilbenes. Holmbom’s team has analysed the components of spruce bark and isolated the most important stilbenes to undergo biotesting.

Towards natural chemistry

Professor Bjarne Holmbom believes that chemical production is currently entering a threshold of change. Today, demand is increasingly for more natural materials and chemicals in place of synthetic ones. In addition, the rising price of oil is threatening the petrochemistry industry.

“It’s now high time to develop new chemical production based on wood and other biomass-based natural materials in which renewable raw materials are produced using environmentally friendly processes and natural materials and natural chemical products. In other words, the chemicals industry must move gradually from “petro to bio”, i.e. from brown synthesis chemistry to green, natural chemistry,” Holmbom concludes.

Holmbom points out that the bulk of the world’s biomass is held in forests and the forest is the only really significant renewable organic raw material. “We now need to focus development on forest-based speciality materials and chemical production. Here in Finland we’re well positioned to be at the forefront of this development.”

Leena Vahakyla | alfa
Further information:
http://www.aka.fi/eng

More articles from Agricultural and Forestry Science:

nachricht Robotic weeders: to a farm near you?
10.01.2018 | American Society of Agronomy

nachricht Alfalfa loss? Annual ryegrass is a win
03.01.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>