Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spruce HMR lignan may slow development of hormonal cancers: Health effects from bioactive substances in tree knots

02.06.2006
Knot heartwood, i.e. the knot or branch section contained within the tree stem, has been found to contain considerably large amounts of phenolic protective agents. These bioactive substances contained in knot heartwood can be isolated and utilised e.g. in health foods and medicines or as special chemicals in other products. This year has seen the first tree knot extract product brought onto the market. Current interest is centred around HMR lignan, which has been isolated from spruce knot heartwood. Experimental research shows HMR to have a slowing effect on the development of e.g. hormonal cancers.

“Knot heartwood is easily utilised because it’s delivered along with the wood raw material to pulp and paper mills, where it can be separated out via a relatively simple process,” says Professor Bjarne Holmbom of Åbo Akademi University. Holmbom’s team at the Centre of Excellence in Process Chemistry has been researching components derived from wood and their properties as a part of the Wood Material Science and Engineering Research Programme of the Academy of Finland and Tekes, Finnish Funding Agency for Technology and Innovation.

The study, led by Holmbom, has analysed the knot heartwood of the main wood species in Finland as well as a number of foreign species. The first knot derivative product brought onto the market this year, HMR lignan isolated from spruce knot heartwood, will be marketed as a food additive. According to research carried out under the direction of Professor Risto Santti and Professor Sari Mäkelä at the University of Turku, HMR lignan slows down the development of hormonal cancers under test conditions. The substance may also have positive affects on cardiovascular diseases and other oestrogen dependent health problems such as menopause related conditions and osteoporosis.

“We don’t know whether this will be the next global brand after Benecol or Xylitol, but it has all the potential and there’s hope that it will,” says Holmbom.

Antioxidants in tree bark

Research by the Wood Material Science and Engineering Research Programme has, under Holmbom’s direction, also focused on derivatives of tree bark. Tree bark contains a variety of bioactive protective substances. For example, spruce bark contains large quantities of stilbenes which have numerous beneficial health effects.

“Research into natural sources of stilbenes has intensified in recent years. Studies are concentrated primarily on resveratrol, which has proven to be a strong antioxidant. It’s been shown to prevent the development of cancer and prolong cell lifespan,” Bjarne Holmbom says. Resveratrol is also found in the peel of black grapes and thus also in red wine.

Spruce bark contains small amounts of resveratrol but huge quantities, as much as ten percent of its own weight, of similar types of stilbenes. Holmbom’s team has analysed the components of spruce bark and isolated the most important stilbenes to undergo biotesting.

Towards natural chemistry

Professor Bjarne Holmbom believes that chemical production is currently entering a threshold of change. Today, demand is increasingly for more natural materials and chemicals in place of synthetic ones. In addition, the rising price of oil is threatening the petrochemistry industry.

“It’s now high time to develop new chemical production based on wood and other biomass-based natural materials in which renewable raw materials are produced using environmentally friendly processes and natural materials and natural chemical products. In other words, the chemicals industry must move gradually from “petro to bio”, i.e. from brown synthesis chemistry to green, natural chemistry,” Holmbom concludes.

Holmbom points out that the bulk of the world’s biomass is held in forests and the forest is the only really significant renewable organic raw material. “We now need to focus development on forest-based speciality materials and chemical production. Here in Finland we’re well positioned to be at the forefront of this development.”

Leena Vahakyla | alfa
Further information:
http://www.aka.fi/eng

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>