Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Spruce HMR lignan may slow development of hormonal cancers: Health effects from bioactive substances in tree knots

Knot heartwood, i.e. the knot or branch section contained within the tree stem, has been found to contain considerably large amounts of phenolic protective agents. These bioactive substances contained in knot heartwood can be isolated and utilised e.g. in health foods and medicines or as special chemicals in other products. This year has seen the first tree knot extract product brought onto the market. Current interest is centred around HMR lignan, which has been isolated from spruce knot heartwood. Experimental research shows HMR to have a slowing effect on the development of e.g. hormonal cancers.

“Knot heartwood is easily utilised because it’s delivered along with the wood raw material to pulp and paper mills, where it can be separated out via a relatively simple process,” says Professor Bjarne Holmbom of Åbo Akademi University. Holmbom’s team at the Centre of Excellence in Process Chemistry has been researching components derived from wood and their properties as a part of the Wood Material Science and Engineering Research Programme of the Academy of Finland and Tekes, Finnish Funding Agency for Technology and Innovation.

The study, led by Holmbom, has analysed the knot heartwood of the main wood species in Finland as well as a number of foreign species. The first knot derivative product brought onto the market this year, HMR lignan isolated from spruce knot heartwood, will be marketed as a food additive. According to research carried out under the direction of Professor Risto Santti and Professor Sari Mäkelä at the University of Turku, HMR lignan slows down the development of hormonal cancers under test conditions. The substance may also have positive affects on cardiovascular diseases and other oestrogen dependent health problems such as menopause related conditions and osteoporosis.

“We don’t know whether this will be the next global brand after Benecol or Xylitol, but it has all the potential and there’s hope that it will,” says Holmbom.

Antioxidants in tree bark

Research by the Wood Material Science and Engineering Research Programme has, under Holmbom’s direction, also focused on derivatives of tree bark. Tree bark contains a variety of bioactive protective substances. For example, spruce bark contains large quantities of stilbenes which have numerous beneficial health effects.

“Research into natural sources of stilbenes has intensified in recent years. Studies are concentrated primarily on resveratrol, which has proven to be a strong antioxidant. It’s been shown to prevent the development of cancer and prolong cell lifespan,” Bjarne Holmbom says. Resveratrol is also found in the peel of black grapes and thus also in red wine.

Spruce bark contains small amounts of resveratrol but huge quantities, as much as ten percent of its own weight, of similar types of stilbenes. Holmbom’s team has analysed the components of spruce bark and isolated the most important stilbenes to undergo biotesting.

Towards natural chemistry

Professor Bjarne Holmbom believes that chemical production is currently entering a threshold of change. Today, demand is increasingly for more natural materials and chemicals in place of synthetic ones. In addition, the rising price of oil is threatening the petrochemistry industry.

“It’s now high time to develop new chemical production based on wood and other biomass-based natural materials in which renewable raw materials are produced using environmentally friendly processes and natural materials and natural chemical products. In other words, the chemicals industry must move gradually from “petro to bio”, i.e. from brown synthesis chemistry to green, natural chemistry,” Holmbom concludes.

Holmbom points out that the bulk of the world’s biomass is held in forests and the forest is the only really significant renewable organic raw material. “We now need to focus development on forest-based speciality materials and chemical production. Here in Finland we’re well positioned to be at the forefront of this development.”

Leena Vahakyla | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>