Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spruce HMR lignan may slow development of hormonal cancers: Health effects from bioactive substances in tree knots

02.06.2006
Knot heartwood, i.e. the knot or branch section contained within the tree stem, has been found to contain considerably large amounts of phenolic protective agents. These bioactive substances contained in knot heartwood can be isolated and utilised e.g. in health foods and medicines or as special chemicals in other products. This year has seen the first tree knot extract product brought onto the market. Current interest is centred around HMR lignan, which has been isolated from spruce knot heartwood. Experimental research shows HMR to have a slowing effect on the development of e.g. hormonal cancers.

“Knot heartwood is easily utilised because it’s delivered along with the wood raw material to pulp and paper mills, where it can be separated out via a relatively simple process,” says Professor Bjarne Holmbom of Åbo Akademi University. Holmbom’s team at the Centre of Excellence in Process Chemistry has been researching components derived from wood and their properties as a part of the Wood Material Science and Engineering Research Programme of the Academy of Finland and Tekes, Finnish Funding Agency for Technology and Innovation.

The study, led by Holmbom, has analysed the knot heartwood of the main wood species in Finland as well as a number of foreign species. The first knot derivative product brought onto the market this year, HMR lignan isolated from spruce knot heartwood, will be marketed as a food additive. According to research carried out under the direction of Professor Risto Santti and Professor Sari Mäkelä at the University of Turku, HMR lignan slows down the development of hormonal cancers under test conditions. The substance may also have positive affects on cardiovascular diseases and other oestrogen dependent health problems such as menopause related conditions and osteoporosis.

“We don’t know whether this will be the next global brand after Benecol or Xylitol, but it has all the potential and there’s hope that it will,” says Holmbom.

Antioxidants in tree bark

Research by the Wood Material Science and Engineering Research Programme has, under Holmbom’s direction, also focused on derivatives of tree bark. Tree bark contains a variety of bioactive protective substances. For example, spruce bark contains large quantities of stilbenes which have numerous beneficial health effects.

“Research into natural sources of stilbenes has intensified in recent years. Studies are concentrated primarily on resveratrol, which has proven to be a strong antioxidant. It’s been shown to prevent the development of cancer and prolong cell lifespan,” Bjarne Holmbom says. Resveratrol is also found in the peel of black grapes and thus also in red wine.

Spruce bark contains small amounts of resveratrol but huge quantities, as much as ten percent of its own weight, of similar types of stilbenes. Holmbom’s team has analysed the components of spruce bark and isolated the most important stilbenes to undergo biotesting.

Towards natural chemistry

Professor Bjarne Holmbom believes that chemical production is currently entering a threshold of change. Today, demand is increasingly for more natural materials and chemicals in place of synthetic ones. In addition, the rising price of oil is threatening the petrochemistry industry.

“It’s now high time to develop new chemical production based on wood and other biomass-based natural materials in which renewable raw materials are produced using environmentally friendly processes and natural materials and natural chemical products. In other words, the chemicals industry must move gradually from “petro to bio”, i.e. from brown synthesis chemistry to green, natural chemistry,” Holmbom concludes.

Holmbom points out that the bulk of the world’s biomass is held in forests and the forest is the only really significant renewable organic raw material. “We now need to focus development on forest-based speciality materials and chemical production. Here in Finland we’re well positioned to be at the forefront of this development.”

Leena Vahakyla | alfa
Further information:
http://www.aka.fi/eng

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>