Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biotech cotton provides same yield with fewer pesticides

03.05.2006
Arizona farmers receive the same yield/acre, use fewer chemical insecticides and maintain insect biodiversity when they plant the biotech cotton known as Bt cotton, according to new research.

The finding comes from the first large-scale study that simultaneously examined how growing Bt cotton affects yield, pesticide use and biodiversity.

It’s good news for the environment.

"What we see is that it’s positive here in Arizona -- no doubt about it," said Yves Carrière, an associate professor of entomology at The University of Arizona in Tucson. "We’ve reduced pesticide use in Arizona. We’ve wanted to do that for 25 years."

Bt cotton has been genetically altered to produce Bt toxin, a naturally occurring insecticide that kills pink bollworm, a major pest of cotton. Bt cotton has been planted in Arizona since 1996. Now more than half of the state’s 256,000 acres of cotton fields are planted with the biotech plants.

Some have suggested that, in addition to killing the target pests, insecticide-containing crops like Bt cotton would also kill beneficial and non-target arthropods.

The new study found that Bt cotton, also known as transgenic cotton, does not affect the biodiversity of insects in cotton fields.

Carrière said, "There were lots of factors that affected biodiversity in this study. Transgenics were not one of them."

He and his colleagues based their findings on a two-year study of 81 commercial cotton fields in a region of Arizona that spans about 2,500 square miles (6,600 square kilometers). Much of the field and lab work was done by Manda G. Cattaneo as part of her master’s research at UA. Cattaneo is now an extension entomologist at Texas A&M University in College Station.

The multidisciplinary team will publish their research in an upcoming issue of the Proceedings of the National Academy of Sciences. A complete list of authors is at the end of this release. The Environmental Protection Agency funded the research.

Bt cotton controls only one of Arizona’s three major cotton pests. To control the other two pests, sweet potato whitefly (Bemisia tabaci) and the western tarnished plant bug (Lygus hesperus), growers use broad-spectrum insecticides and other types of insecticides known as insect growth regulators.

Carrière and his colleagues studied how Arizona farmers actually planted their crops and applied pesticides.

The researchers compared the yield and pesticide use for 40 fields of non-Bt cotton, 21 fields of Bt cotton and 20 fields of Bt cotton that was also herbicide-resistant.

In addition, each cotton field selected for the study was next to an uncultivated area. That allowed the researchers to compare ant and beetle biodiversity among the various cotton fields and the uncropped areas.

The team used Geographical Information Systems (GIS) and LANDSAT satellite imagery to map the fields and evaluate plant growth in the non-cultivated areas. Plant growth can affect the biodiversity of insects found in an area.

The researchers found that, per pesticide application, Bt cotton produced 9 percent more cotton/acre than non-Bt cotton. However, growers that planted Bt cotton used fewer applications of broad-spectrum insecticides. As a result, growers ended up with similar yields/acre regardless of the type of cotton grown. Carrière suggests that yields were similar across cotton types because the additional insecticide applications on the non-Bt fields cut down on the damage from whiteflies and western tarnished plant bugs.

To see what factors affected insect biodiversity in the cotton fields, the researchers used a type of statistical analysis called path analysis. Factors that affected biodiversity included the sandiness of the soil, use of broad-spectrum insecticides and insect growth regulators, number of cotton seeds planted per acre, and the amount and types of plants in the adjacent uncultivated areas.

The researchers found that the type of cotton had no effect on how much insect biodiversity was in a particular field.

"Yield, pesticides and effects on non-target organisms -- we must look at those all together to assess the environmental impacts of transgenics," Carrière said. "The take-home message is that transgenic crops are very promising for reducing the impact of agriculture, but we need to study how they’re integrated into the way we do agriculture. It depends on how the producers react to the technology."

He added, "It’s a problem that is ecologically complex. We cannot say, ’Because it’s good in Arizona that it will necessarily be good somewhere else.’ We need to study many systems carefully before we can generalize."

Mari N. Jensen | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Individualized fiber components for the world market

23.06.2017 | Physics and Astronomy

How brains surrender to sleep

23.06.2017 | Life Sciences

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>