Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biotech cotton provides same yield with fewer pesticides

03.05.2006
Arizona farmers receive the same yield/acre, use fewer chemical insecticides and maintain insect biodiversity when they plant the biotech cotton known as Bt cotton, according to new research.

The finding comes from the first large-scale study that simultaneously examined how growing Bt cotton affects yield, pesticide use and biodiversity.

It’s good news for the environment.

"What we see is that it’s positive here in Arizona -- no doubt about it," said Yves Carrière, an associate professor of entomology at The University of Arizona in Tucson. "We’ve reduced pesticide use in Arizona. We’ve wanted to do that for 25 years."

Bt cotton has been genetically altered to produce Bt toxin, a naturally occurring insecticide that kills pink bollworm, a major pest of cotton. Bt cotton has been planted in Arizona since 1996. Now more than half of the state’s 256,000 acres of cotton fields are planted with the biotech plants.

Some have suggested that, in addition to killing the target pests, insecticide-containing crops like Bt cotton would also kill beneficial and non-target arthropods.

The new study found that Bt cotton, also known as transgenic cotton, does not affect the biodiversity of insects in cotton fields.

Carrière said, "There were lots of factors that affected biodiversity in this study. Transgenics were not one of them."

He and his colleagues based their findings on a two-year study of 81 commercial cotton fields in a region of Arizona that spans about 2,500 square miles (6,600 square kilometers). Much of the field and lab work was done by Manda G. Cattaneo as part of her master’s research at UA. Cattaneo is now an extension entomologist at Texas A&M University in College Station.

The multidisciplinary team will publish their research in an upcoming issue of the Proceedings of the National Academy of Sciences. A complete list of authors is at the end of this release. The Environmental Protection Agency funded the research.

Bt cotton controls only one of Arizona’s three major cotton pests. To control the other two pests, sweet potato whitefly (Bemisia tabaci) and the western tarnished plant bug (Lygus hesperus), growers use broad-spectrum insecticides and other types of insecticides known as insect growth regulators.

Carrière and his colleagues studied how Arizona farmers actually planted their crops and applied pesticides.

The researchers compared the yield and pesticide use for 40 fields of non-Bt cotton, 21 fields of Bt cotton and 20 fields of Bt cotton that was also herbicide-resistant.

In addition, each cotton field selected for the study was next to an uncultivated area. That allowed the researchers to compare ant and beetle biodiversity among the various cotton fields and the uncropped areas.

The team used Geographical Information Systems (GIS) and LANDSAT satellite imagery to map the fields and evaluate plant growth in the non-cultivated areas. Plant growth can affect the biodiversity of insects found in an area.

The researchers found that, per pesticide application, Bt cotton produced 9 percent more cotton/acre than non-Bt cotton. However, growers that planted Bt cotton used fewer applications of broad-spectrum insecticides. As a result, growers ended up with similar yields/acre regardless of the type of cotton grown. Carrière suggests that yields were similar across cotton types because the additional insecticide applications on the non-Bt fields cut down on the damage from whiteflies and western tarnished plant bugs.

To see what factors affected insect biodiversity in the cotton fields, the researchers used a type of statistical analysis called path analysis. Factors that affected biodiversity included the sandiness of the soil, use of broad-spectrum insecticides and insect growth regulators, number of cotton seeds planted per acre, and the amount and types of plants in the adjacent uncultivated areas.

The researchers found that the type of cotton had no effect on how much insect biodiversity was in a particular field.

"Yield, pesticides and effects on non-target organisms -- we must look at those all together to assess the environmental impacts of transgenics," Carrière said. "The take-home message is that transgenic crops are very promising for reducing the impact of agriculture, but we need to study how they’re integrated into the way we do agriculture. It depends on how the producers react to the technology."

He added, "It’s a problem that is ecologically complex. We cannot say, ’Because it’s good in Arizona that it will necessarily be good somewhere else.’ We need to study many systems carefully before we can generalize."

Mari N. Jensen | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Scientists discover species of dolphin that existed along South Carolina coast

24.08.2017 | Life Sciences

The science of fluoride flipping

24.08.2017 | Life Sciences

Optimizing therapy planning for cancers of the liver

24.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>