Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alternatives to the use of nitrate as a fertiliser

19.04.2006
In order to develop sustainable agricultural production, what is required is a study of nitrogenated sources as alternatives to the nitrates that predominate in agricultural soils and that have a greater contaminant capacity.

The current use of nitrates as a nitrogenated fertiliser in intensive farming has given rise to environmental problems such as the contamination of water or the degradation of the ozone layer. There are also health problems such as deficiencies in the oxygenation of blood in breast-feeding mothers or the accumulation of nitrosamines, substances that are said to be cancerous, in the adult stomach. This is why it is necessary to find a balance between agricultural productivity and quality crops, while maintaining environmental conditions.

These are the conclusions of Mª Dolores Domínguez Valdivia of the Department of Environmental Sciences at the Public University of Navarre in her PhD thesis entitled, Mechanisms of tolerance to ammonium in plants of agronomic interest.

The study is within the framework of research being carried out by researchers at the Public University of Navarre in this field and which has enabled new data to be obtained about the response mechanisms of various plant species arising from the stress produced as a result of the use of exclusively ammoniacal fertilisers. Stress in this sense is understood as the processes that produce a decrease in plant growth and thereby the productivity of crops. A thorough knowledge of these questions enables a more rational use of fertilisers in farming.

Research for sustainable farming

The possibility of using animal ammonium or urea as nitrogenated sources from certain plants enables the study of these forms of nitrogen as an alternative to nitrates. Nevertheless, ammonium, despite being the most respectful with the environment, does not produce the same growth in most crop plants as that when nitrate is used as a fertiliser. The studies carried out to date had revealed that the use of nitrate over years favours – in most plants – a sensitivity or even toxicity to ammonium. However, the tolerance shown by some crop species such as the pea is of great interest due to the studies of the physiological, metabolic and molecular mechanisms that the ability to tolerate ammonia confers on these plants.

In this study, Mª Dolores Domínguez has compared the effect of ammoniacal nutrition on the metabolism of sensitive plants, such as spinach and on tolerant ones, like the pea. The results indicate that the processes associated with tolerance to ammonia in the pea are multiple with respect to spinach.

In the pea plant there is greater regulation of the absorption of ammonia at the roots and control of the ammonium levels, above all in the leaf tissue. Moreover, important changes are observed in relation to the carbon and nitrogen of the majority aminoacids (asparragine in the pea and glutamine in spinach). With respect to the activities of the GS (glutamine synthetase) and GDH (glutamate dehydrogenase) enzymes, responsible for the assimilation of ammonium, this substance is not modified in moderate concentrations in the pea but it is so in spinach.

Regarding the main metabolic modifications, these take place in the roots in the case of the pea and in the leaves in the case of spinach. Moreover, in the roots of the pea, morphological changes have been observed which could be indicative of adaptations in order to assimilate the ammonium without modifying its internal processes.

In another part of the study the nature of the stress produced in plants by the use of ammoniacal fertilisers is investigated. The high concentration of ammonium does not carry oxidative stress with it (i.e. the molecules are oxidised due to alteration produced in the enzymes), unlike that which occurs in the majority of these states. The activation of some antioxidant enzymes is reflection of stress that ammonium produces in plants. Moreover, this reaction can favour the growth of plants tolerant to ammonium in another situation of added stress.

The researchers have shown that tolerance to ammonium experienced in one type of pea can be extrapolated to the rest of the varieties of the species. Nevertheless, different ranges of tolerance and strategies are observed for growth under ammoniacal nutrition.

Cloning pea genes

To study the ammonium assimilation enzymes, GS and GDH, in depth, these pea genes have been cloned and sequenced and, by means of a novel technique, two new antibodies have been produced that recognise the enzymes of these plants and of other plant species. The results show that the contents of the GS and GDH enzymes in the root tissues of the different varieties of pea are increased when ammoniacal fertiliser is applied and, this increment is related to the concentration of ammonium applied.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=947

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>