Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alternatives to the use of nitrate as a fertiliser

19.04.2006
In order to develop sustainable agricultural production, what is required is a study of nitrogenated sources as alternatives to the nitrates that predominate in agricultural soils and that have a greater contaminant capacity.

The current use of nitrates as a nitrogenated fertiliser in intensive farming has given rise to environmental problems such as the contamination of water or the degradation of the ozone layer. There are also health problems such as deficiencies in the oxygenation of blood in breast-feeding mothers or the accumulation of nitrosamines, substances that are said to be cancerous, in the adult stomach. This is why it is necessary to find a balance between agricultural productivity and quality crops, while maintaining environmental conditions.

These are the conclusions of Mª Dolores Domínguez Valdivia of the Department of Environmental Sciences at the Public University of Navarre in her PhD thesis entitled, Mechanisms of tolerance to ammonium in plants of agronomic interest.

The study is within the framework of research being carried out by researchers at the Public University of Navarre in this field and which has enabled new data to be obtained about the response mechanisms of various plant species arising from the stress produced as a result of the use of exclusively ammoniacal fertilisers. Stress in this sense is understood as the processes that produce a decrease in plant growth and thereby the productivity of crops. A thorough knowledge of these questions enables a more rational use of fertilisers in farming.

Research for sustainable farming

The possibility of using animal ammonium or urea as nitrogenated sources from certain plants enables the study of these forms of nitrogen as an alternative to nitrates. Nevertheless, ammonium, despite being the most respectful with the environment, does not produce the same growth in most crop plants as that when nitrate is used as a fertiliser. The studies carried out to date had revealed that the use of nitrate over years favours – in most plants – a sensitivity or even toxicity to ammonium. However, the tolerance shown by some crop species such as the pea is of great interest due to the studies of the physiological, metabolic and molecular mechanisms that the ability to tolerate ammonia confers on these plants.

In this study, Mª Dolores Domínguez has compared the effect of ammoniacal nutrition on the metabolism of sensitive plants, such as spinach and on tolerant ones, like the pea. The results indicate that the processes associated with tolerance to ammonia in the pea are multiple with respect to spinach.

In the pea plant there is greater regulation of the absorption of ammonia at the roots and control of the ammonium levels, above all in the leaf tissue. Moreover, important changes are observed in relation to the carbon and nitrogen of the majority aminoacids (asparragine in the pea and glutamine in spinach). With respect to the activities of the GS (glutamine synthetase) and GDH (glutamate dehydrogenase) enzymes, responsible for the assimilation of ammonium, this substance is not modified in moderate concentrations in the pea but it is so in spinach.

Regarding the main metabolic modifications, these take place in the roots in the case of the pea and in the leaves in the case of spinach. Moreover, in the roots of the pea, morphological changes have been observed which could be indicative of adaptations in order to assimilate the ammonium without modifying its internal processes.

In another part of the study the nature of the stress produced in plants by the use of ammoniacal fertilisers is investigated. The high concentration of ammonium does not carry oxidative stress with it (i.e. the molecules are oxidised due to alteration produced in the enzymes), unlike that which occurs in the majority of these states. The activation of some antioxidant enzymes is reflection of stress that ammonium produces in plants. Moreover, this reaction can favour the growth of plants tolerant to ammonium in another situation of added stress.

The researchers have shown that tolerance to ammonium experienced in one type of pea can be extrapolated to the rest of the varieties of the species. Nevertheless, different ranges of tolerance and strategies are observed for growth under ammoniacal nutrition.

Cloning pea genes

To study the ammonium assimilation enzymes, GS and GDH, in depth, these pea genes have been cloned and sequenced and, by means of a novel technique, two new antibodies have been produced that recognise the enzymes of these plants and of other plant species. The results show that the contents of the GS and GDH enzymes in the root tissues of the different varieties of pea are increased when ammoniacal fertiliser is applied and, this increment is related to the concentration of ammonium applied.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=947

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>