Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alternatives to the use of nitrate as a fertiliser

19.04.2006
In order to develop sustainable agricultural production, what is required is a study of nitrogenated sources as alternatives to the nitrates that predominate in agricultural soils and that have a greater contaminant capacity.

The current use of nitrates as a nitrogenated fertiliser in intensive farming has given rise to environmental problems such as the contamination of water or the degradation of the ozone layer. There are also health problems such as deficiencies in the oxygenation of blood in breast-feeding mothers or the accumulation of nitrosamines, substances that are said to be cancerous, in the adult stomach. This is why it is necessary to find a balance between agricultural productivity and quality crops, while maintaining environmental conditions.

These are the conclusions of Mª Dolores Domínguez Valdivia of the Department of Environmental Sciences at the Public University of Navarre in her PhD thesis entitled, Mechanisms of tolerance to ammonium in plants of agronomic interest.

The study is within the framework of research being carried out by researchers at the Public University of Navarre in this field and which has enabled new data to be obtained about the response mechanisms of various plant species arising from the stress produced as a result of the use of exclusively ammoniacal fertilisers. Stress in this sense is understood as the processes that produce a decrease in plant growth and thereby the productivity of crops. A thorough knowledge of these questions enables a more rational use of fertilisers in farming.

Research for sustainable farming

The possibility of using animal ammonium or urea as nitrogenated sources from certain plants enables the study of these forms of nitrogen as an alternative to nitrates. Nevertheless, ammonium, despite being the most respectful with the environment, does not produce the same growth in most crop plants as that when nitrate is used as a fertiliser. The studies carried out to date had revealed that the use of nitrate over years favours – in most plants – a sensitivity or even toxicity to ammonium. However, the tolerance shown by some crop species such as the pea is of great interest due to the studies of the physiological, metabolic and molecular mechanisms that the ability to tolerate ammonia confers on these plants.

In this study, Mª Dolores Domínguez has compared the effect of ammoniacal nutrition on the metabolism of sensitive plants, such as spinach and on tolerant ones, like the pea. The results indicate that the processes associated with tolerance to ammonia in the pea are multiple with respect to spinach.

In the pea plant there is greater regulation of the absorption of ammonia at the roots and control of the ammonium levels, above all in the leaf tissue. Moreover, important changes are observed in relation to the carbon and nitrogen of the majority aminoacids (asparragine in the pea and glutamine in spinach). With respect to the activities of the GS (glutamine synthetase) and GDH (glutamate dehydrogenase) enzymes, responsible for the assimilation of ammonium, this substance is not modified in moderate concentrations in the pea but it is so in spinach.

Regarding the main metabolic modifications, these take place in the roots in the case of the pea and in the leaves in the case of spinach. Moreover, in the roots of the pea, morphological changes have been observed which could be indicative of adaptations in order to assimilate the ammonium without modifying its internal processes.

In another part of the study the nature of the stress produced in plants by the use of ammoniacal fertilisers is investigated. The high concentration of ammonium does not carry oxidative stress with it (i.e. the molecules are oxidised due to alteration produced in the enzymes), unlike that which occurs in the majority of these states. The activation of some antioxidant enzymes is reflection of stress that ammonium produces in plants. Moreover, this reaction can favour the growth of plants tolerant to ammonium in another situation of added stress.

The researchers have shown that tolerance to ammonium experienced in one type of pea can be extrapolated to the rest of the varieties of the species. Nevertheless, different ranges of tolerance and strategies are observed for growth under ammoniacal nutrition.

Cloning pea genes

To study the ammonium assimilation enzymes, GS and GDH, in depth, these pea genes have been cloned and sequenced and, by means of a novel technique, two new antibodies have been produced that recognise the enzymes of these plants and of other plant species. The results show that the contents of the GS and GDH enzymes in the root tissues of the different varieties of pea are increased when ammoniacal fertiliser is applied and, this increment is related to the concentration of ammonium applied.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=947

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>