Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The effects of climate change on the physiology of alfalfa

13.04.2006
The biologist Gorka Erice Soreasu, a researcher in the Department of Plant Biology of the University of Navarra, has studied the effects of climate change on the physiology of alfalfa.

This study, which forms part of his doctoral thesis, demonstrates that this plant, frequently used as feed for farm animals, adapts to increases in carbon dioxide (CO2), temperature and dryness, protecting itself in this way from the effects of climate change.

His research, which focused on the regrowth of the plant, reveals that alfalfa grows more with elevated concentrations of carbon dioxide (CO2), in particular when this condition coincides with high temperatures. The effects can be affected by other variables, such as the availability of water in the soil, which would reduce its growth and can modify its response to CO2. In addition, in the study it was confirmed that the process of photosynthesis can be stimulated or reduced by CO2, depending on the growth phase of the plant.

Variability in the responses

As this study highlighted, one of the most interesting aspects of this type of plant is the increase in nutrient storage in the roots, especially of proteins, when the plant is periodically cut back. These nutrient reserves contribute to rapid regrowth and to maintaining the perenniality of this crop. Similarly, it has been shown that a moderately dry climate maintained over time favors the accumulation of these reserve proteins, which can stimulate the growth of the plants during the following regrowth.

The results show the great variability of plant response to increases in CO2. Thus, a greater availability of CO2, which in principle should stimulate growth through increase photosynthesis, when it interacts with other variables such as the temperature or availability of water, can modify significantly the response of the alfalfa, depending on its stage of growth.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=942

More articles from Agricultural and Forestry Science:

nachricht Faba fix for corn's nitrogen need
11.04.2018 | American Society of Agronomy

nachricht Wheat research discovery yields genetic secrets that could shape future crops
09.04.2018 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>